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Executive Summary 
This working paper presents the COMFORTage project’s first comprehensive account of developing 
and deploying Patient Digital Twins to support personalised treatment and monitoring for dementia 
and frailty. By combining real-time clinical, sensor, genetic, and lifestyle data, the PDTs act as 
dynamic, individualised virtual models that enable healthcare professionals to simulate patient 
trajectories, anticipate risks, and deliver tailored interventions. The document details the system’s 
layered architecture, encompassing data integration, advanced modelling and simulation, 
explainable AI-driven recommendations, and intuitive clinician dashboards. It illustrates the 
system's integration within the broader COMFORTage platform, including the Clinical Decision 
Support System and opt-in digital health tools. The approach is validated across thirteen European 
pilot sites, ensuring robustness, scalability, and practical relevance. 

Beyond the technical foundation, the working paper emphasises strong ethical, legal, and regulatory 
compliance, alignment with emerging European standards (GAIA-X, European Health Data Space 
(EHDS)), and stakeholder involvement from design through deployment. The result is a 
transformative, user-centred digital health solution that supports proactive, personalised care for 
ageing populations, establishing COMFORTage as a leader in the application of digital twins for real-
world healthcare improvement. 

This working paper is the first version of a series of working papers entitled “Digital Twins for 
Personalised Treatment and Monitoring” that seek to encapsulate and describe the work conducted 
in the context of the task – “Digital Twins for Personalised Treatment and Monitoring”.  
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1 Introduction  
As healthcare systems across Europe seek to tackle the growing burden and challenges of dementia 
and frailty in ageing populations, there is an urgent need for more proactive, personalised, and data-
driven care solutions. Digital Twin technology, that is encapsulated into the introduction of virtual 
representations of individual patients that are dynamically informed by real-world data, offers a 
powerful means to simulate health trajectories, predict risks, and optimise treatment decisions. This 
working paper presents the COMFORTage project’s first in-depth attempt of developing and 
operationalising Patient Digital Twins (PDTs) in that context. The core of these applications consists 
from the real-time integration of clinical records, sensor data, genetic information, and lifestyle 
inputs. To this end, these PDTs are designed to support tailored interventions while enhancing 
transparency, adaptability, and clinical relevance. 

This document outlines the system’s modular architecture, detailing each layer from secure data 
ingestion and multimodal fusion to advanced modelling, explainable AI-based recommendations, 
and user-friendly clinician interfaces. It also highlights how PDTs are embedded within the broader 
COMFORTage ecosystem, including integration with the Clinical Decision Support System (CDSS) and 
the Integrated Care Model Library (ICML), ensuring seamless interoperability and exchange of 
information and results across these core components of the project. The PDTs will be validated 
across thirteen diverse pilots to highlight their robustness, added-value and performance, as well as 
their alignment with standards and initiatives such as the GAIA-X and EHDS. 

1.1 Structure of the document 

This working paper is organised into six main sections to provide a comprehensive overview of the 
development, integration, and evaluation of PDTs for personalised treatment and monitoring within 
the COMFORTage project. 

1. Section 1 introduces the scope and objectives of the document, outlines its structure, and 
describes its relation to other project activities and working papers. 

2. Section 2 presents the core concepts and the current state of Patient Digital Twins, including 
a literature review, the relevance of DTs in dementia and frailty, and the identification of key 
research gaps. 

3. Section 3 details the methodology and architecture for the development of PDTs, including 
the use of population databases, conceptual and modular system architecture, personalised 
recommendations, and an overview of the COMFORTage DT platform. 

4. Section 4 describes the integration of PDTs within the broader COMFORTage ecosystem. 
This includes their connection with the CDSS, the ICML, Explainable AI (XAI), the Virtual 
Healthcare Platform (VHP), and opt-in tools. Furthermore, it discusses PDT usability across 
all pilot studies and addresses the ethical and legal considerations involved. 

5. Section 5 focuses on future perspectives, providing a roadmap for further development and 
testing, platform evolution, alignment with the GAIA-X framework, and the key performance 
indicators (KPIs) and evaluation methods relevant to the implementation of PDTs. 

6. Section 6 offers conclusions and discusses current limitations and challenges, summarising 
the main achievements and providing directions for future work. 

This structure ensures a logical flow from conceptual foundations and technical implementation to 
integration, validation, and future outlook, providing a clear reference for both technical and non-
technical stakeholders. 



Digital Twins for Personalised Treatment and Monitoring I 
 

 

9 

1.2 Relation to other activities and working papers 
The development of this working paper,“Digital Twins for Personalised Treatment and Monitoring 
I” is closely aligned with several key working papers across the COMFORTage project. The table 
below, ¡Error! No se encuentra el origen de la referencia., highlights the related working papers 
and their corresponding work packages (WPs), reflecting the technical, clinical, ethical, and co-
design foundations that underpin the Digital Twin system. These linkages ensure coherence with 
the project’s reference architecture, data infrastructure and AI models, clinical decision support 
tools, pilot co-design, and ethical and legal compliance. 
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2 Patient Digital Twins (PDTs) and Scope 
This section defines the concept of PDTs within the context of the COMFORTage project and outlines 
their intended scope and functionality. It explores key technological, methodological, and clinical 
advances that inform the COMFORTage project’s design choices, focusing on how PDTs are being 
used to enable personalised treatment, monitoring, and risk prediction in healthcare. Particular 
attention is given to use cases relevant to ageing-related conditions such as dementia and frailty 
that are the main focus of the project, while also examining enabling technologies including 
multimodal data integration, AI-driven simulation, and real-time patient modelling. The review 
provides a critical foundation for defining the scope and direction of the PDTs implemented within 
COMFORTage. 

2.1 PDTs in COMFORTage 
2.1.1 Core concepts of DT in COMFORTage 
DTs represent virtual models of individuals, continuously updated with real-time data from diverse 
sources, enabling accurate simulation, monitoring, and prediction of health trajectories. In the 
context of dementia and frailty, DTs hold significant potential to enhance personalised care by 
integrating multidimensional data—including clinical assessments, biomarkers, genetic information, 
sensor inputs, and lifestyle factors—into dynamic models. Within COMFORTage, DTs substantially 
expand the scope and add value to healthcare interventions by allowing proactive, tailored 
treatments, early detection of deterioration, and optimised resource allocation. 

2.1.1.1 Personalised treatment in dementia and frailty  
Personalised treatment is pivotal in managing dementia and frailty, conditions characterised by 
considerable variability in progression and response to interventions. The adoption of personalised 
care approaches—including biomarker-driven stratification, pharmacogenomics, AI-driven 
predictive modelling, and digital health tools—enables tailored interventions matching individual 
patient profiles. 

Recent literature highlights the significant benefits of personalised care in dementia and frailty 
management. Biomarkers play an essential role in identifying distinct patient subgroups, aiding 
clinicians in targeted and timely interventions. For instance, research under the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) demonstrated that integrating biomarkers such as amyloid-beta, tau 
proteins, and neuroimaging data significantly enhances the precision of disease staging and 
progression prediction [1]. Similarly, pharmacogenomics has increasingly informed medication 
selection by aligning treatment plans with genetic profiles, reducing adverse reactions, and 
optimising drug efficacy [2]. 

The use of Artificial Intelligence (AI) further augments personalised treatment through predictive 
modelling. Projects such as the VirtualBrainCloud under Horizon 2020 emphasise AI-driven 
personalised brain simulations, which enable clinicians to better understand patient-specific 
progression and responses to treatments, effectively guiding therapeutic decisions1. Furthermore, 
the EU-funded FrailSafe initiative leveraged wearable sensors and data analytics to deliver 
personalised care plans, significantly improving preventive strategies and quality of life outcomes 
for frail older adults2. 

DT technology substantially enhances the capacity for personalised treatment by creating dynamic, 
continuously updated virtual replicas of patients. COMFORTage, a Horizon Europe initiative, 
exemplifies the utilisation of DTs to integrate real-time data from clinical assessments, lifestyle 

 

1 https://virtualbraincloud-2020.eu/ 
2 https://frailsafe-project.eu/ 
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monitoring, and sensor-based technologies. This integration provides actionable, individualised 
insights into disease trajectory, risk factors, and optimal intervention strategies. Through such 
predictive and proactive capabilities, DTs enable personalised, precise, and timely interventions that 
significantly improve patient outcomes and enhance healthcare efficiency. 

In conclusion, personalised treatment, supported by biomarker integration, pharmacogenomics, AI-
driven modelling, and DT technology, presents a robust framework to substantially improve 
healthcare delivery for individuals with dementia and frailty. This approach aligns with European 
healthcare priorities and demonstrates tangible benefits in care outcomes, resource efficiency, and 
patient well-being. 

2.1.1.2 Personalised monitoring in dementia and frailty  
Personalised monitoring is essential for the effective management of dementia and frailty, 
conditions characterised by progressive decline and significant individual variability. Continuous, 
individualised monitoring enables early detection of changes in health status, facilitating timely 
interventions that can slow disease progression and improve quality of life. 

DT technology enhances personalised monitoring by creating dynamic, virtual representations of 
individuals that integrate real-time data from various sources, including wearable sensors, 
electronic health records, and patient-reported outcomes. These virtual models allow for the 
simulation and prediction of health trajectories, enabling proactive and tailored healthcare 
strategies. 

The COMFORTage project exemplifies the application of DTs in personalised monitoring. By 
aggregating data from 13 pilot sites across Europe, COMFORTage develops PDTs that reflect the 
unique health profiles of individuals with dementia and frailty. These PDTs are continuously updated 
with data from clinical assessments, biomarkers, and sensor technologies, providing clinicians with 
real-time insights into patient health and facilitating personalised care plans.  

COMFORTage's Virtual AI-based Healthcare Platform (VHP) integrates various components such as 
the CDSS, ICML, and Explainable AI (XAI) to support healthcare professionals in making informed 
decisions. The platform's architecture ensures secure data handling and interoperability, aligning 
with the European Health Data Space (EHDS) initiatives.  

Other EU-funded projects also highlight the significance of personalised monitoring. The SERENADE 
[3] project focuses on sensor-based, explainable detection of cognitive decline, utilising AI to analyse 
behavioural changes in individuals with mild cognitive impairment. Similarly, the ADMarker project 
employs a multi-modal federated learning system to monitor digital biomarkers of Alzheimer's 
disease, demonstrating the potential of advanced analytics in personalised health monitoring. 

In conclusion, personalised monitoring, facilitated by DT technology and supported by EU research 
initiatives, offers a transformative approach to managing dementia and frailty. By enabling 
continuous, individualised health tracking, these technologies empower healthcare providers to 
deliver proactive, tailored interventions, ultimately enhancing patient outcomes and QoL. 

2.1.2 Literature review 

2.1.2.1 Literature review methodology 
A systematic literature search was carried out to identify key publications on DT applications in 
dementia and frailty. Comprehensive searches were conducted across major scientific databases—
including PubMed, IEEE Xplore, Scopus, and Web of Science—using targeted keywords such as 
“digital twin”, “virtual patient”, “Alzheimer* or dementia”, “frailty or geriatric”, and “healthcare”. 
The search focused on literature published from 2010 to 2024, corresponding with the growing 
adoption of DT in healthcare. Priority was given to peer-reviewed journal articles and conference 
proceedings that presented original research, frameworks, or reviews relevant to DT technology for 
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patient care, particularly in the context of ageing. Additional resources, such as project reports and 
authoritative reviews, were included when they provided valuable context or highlighted current 
trends and real-world applications. 

The selection process involved a stepwise review of titles and abstracts to pinpoint studies that 
explicitly addressed DT applications in dementia (e.g., cognitive evaluation, care planning, decision 
support) or frailty (e.g., monitoring functional decline, predicting falls, supporting rehabilitation). 
For each included study, relevant details were extracted regarding the study’s aims, methodologies 
(including simulation models, AI techniques, and clinical datasets used), and primary results. 
Throughout the review, duplicate and overlapping material was excluded, while care was taken to 
retain essential content, figures, and tables from the source documents. 

2.1.2.2 DTs in health  
DTs have proven effective in the manufacturing sector by enhancing predictive capabilities and 
enabling tailored solutions, leading to more efficient and effective resource deployment. Various DT 
initiatives have been underway in the industry, government, and military, but DT in healthcare is 
still in its early stages. Building on this success and with the growing prevalence of chronic conditions 
and increasing pressure on healthcare systems to deliver high-quality, cost-effective care anytime 
and anywhere, this approach aligns well with the principles of value-based healthcare. DTs enable 
easy visualisation, reasoning, experimenting, and forecasting of certain aspects of a physical world 
entity in a way that is both efficient and cost-effective. 

These digital models are continuously updated with real-time data and can simulate various 
processes, predict outcomes, and support decision-making in healthcare. DTs hold thus significant 
promise for transforming healthcare. 

Many healthcare institutions are conducting proof-of-concept studies to explore the potential 
benefits and feasibility of DTs in various medical applications but their development and 
deployment in healthcare are still in the nascent stages; significant progress has, however, been 
achieved in relation to personalised medicine to predict disease progression and to optimise 
treatment plans, medical device and equipment management to monitor and manage medical 
equipment, ensuring optimal performance and maintenance and surgical planning and simulation 
allowing surgeons to practice and refine procedures before actual operations. The main advantage 
of a DT is that it is more than just a digital replica of a physical system; it is designed to faithfully 
mirror the real-world system in real-time. 

When considering the clinical domains where DTs are implemented, the following ones are today 
considered as the most mature: 

▪ Cardiovascular care: DTs are particularly advanced in cardiovascular applications, such as 
simulating cardiac electrophysiology, planning interventions like valve replacements, and 
predicting outcomes of surgical procedures. These applications benefit from rich datasets 
and validated computational models. 

▪ Orthopedics and musculoskeletal modelling: Significant progress has been made in using 
DTs to personalise orthopedic interventions, for instance, in joint replacements or spinal 
surgeries. These applications leverage detailed biomechanical models tailored to individual 
patients. 

▪ Cancer care (particularly breast and prostate cancer): DTs are also relatively advanced in 
oncology, especially for modelling tumor growth, predicting treatment responses, and 
optimising radiotherapy plans. 
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Figure 1: Major companies utilising DTs [4] 

As one can notice from Figure 1 listing major companies which make use of the technology, DTs still 
remain currently associated with a specific physical entity or process and are not yet capable of 
representing entities with complex interactions, such as the human being in its full complexity and 
integrity. There are DT types of one body system, or body organ (i.e., lung or heart), or body 
function, or finer body component levels (cellular, subcellular), or of the entire human body. 
Similarly, DTs can be created for a specific disease or disorder. Composite DTs may integrate two or 
more of the different types of DTs. Continued research, technological advancements, and 
collaborative efforts are essential to fully realise their potential. 

The key challenges related to the use of DTs are related to data. The integration of physiological, 
biological, and chemical models into DT simulations that capture the underlying pathways and 
disease processes will enable a much higher degree of customisation and adaptability but the lack 
of (use of) standards, the lack of alignment between standards, the privacy constraints restricting 
access to high quality longitudinal data, the data biases and a number of ethical issues have an 
important impact on the wide acceptance of the technology.  As the number of individuals living 
with dementia continues to rise sharply, innovative solutions like DTs are vital to addressing this 
urgent challenge.  

Dementia diagnosis and management are currently suboptimal due to short patient-provider 
interactions, multi-symptom presentation, co-morbidities, and barriers such as illiteracy and 
sensory loss. There's a need for more accurate, early, and individualised intervention strategies. 

Utilising Virtual Human Twins (VHTs) to simulate the progression of Alzheimer's disease in patients 
offers several key benefits: 

▪ Reduced healthcare costs thanks to early detection  

▪ Improved quality of life: Early, personalised care to delay the progression of the disease, 
relieving the emotional and financial burden on carers 

▪ Maintaining economic productivity: Reducing care-related absenteeism  
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▪ Contribution to medical research: Collection of data for the development of new treatments 
and therapies 

Although DT models of the human brain are not yet possible, it is hoped that future DT technology 
will greatly improve the current practice of clinical psychopharmacology. 

2.1.3 DTs in dementia  
DTs are typically defined as integrated, continuously updated virtual replicas of physical entities that 
merge live data feeds with statistical models to inform evidence-based decision-making [5][6], 
[7][4],[8]. 

In the context of health, DTs are dynamic, evolving models of individuals, organs, or biological 
systems. These systems synthesise multimodal datasets including electronic health records (EHRs), 
environmental data, behavioural metrics, and continuous streams from wearable devices and 
biosensors to simulate internal physiological processes, monitor health status, and forecast clinical 
trajectories [6]. In contrast to traditional digital health tools such as dashboards or isolated record 
systems, DTs enable real-time adaptation by learning from incoming data and refining their models 
through big data and machine learning techniques [9][10]. 

DT systems in healthcare typically involve the acquisition of high-frequency, multimodal data from 
clinical record systems, wearables, imaging modalities, and real-time modelling and simulation of 
individualised virtual representations. The application of machine learning for pattern detection, 
forecasting, and intervention planning, and feedback loops continuously refine the virtual models 
in response to new data inputs [11]. DTs have demonstrated broad applicability potential across 
medical specialties, including cardiology, oncology, orthopedics, and perioperative medicine [5], [6]. 
Their capacity to integrate heterogeneous data sources and simulate patient-specific clinical 
pathways positions DTs as particularly valuable tools in the new paradigms of dementia 
management, where personalised and adaptive care is essential [12]. 

Tailoring DT applications to dementia care 

Dementia, clinically classified as a major neurocognitive disorder in current diagnostic systems, is a 
syndrome characterised by a significant decline in one or more cognitive domains that interferes 
with independence in everyday functioning. Dementias severely threaten the well-being of older 
people, their families, and communities. Current limitations in prevention, diagnosis and treatment 
of dementia have prompted growing interest in data-driven and patient-centred approaches, 
including the application of DT technologies [5], [10], [12]. 

DT technologies hold unprecedented potential to transform dementia care by addressing critical 
limitations of conventional models through highly personalised, adaptive, predictive, context-
aware, and continuously learning systems. By generating dynamic, data-rich representations of a 
patient’s evolving cognitive and physiological status, DTs offer a paradigm shift from reactive care 
to proactive, fine-tuned, and anticipatory intervention strategies [4], [13]. 

DTs can simulate individualised dementia trajectories by integrating multimodal inputs from 
electronic health records, wearable and ambient sensors, behavioural data, neuroimaging, and 
contextual information. These models enable fine-grained risk stratification, support early and 
differential diagnosis, and provide longitudinal tracking of cognitive decline and functional 
deterioration. Their ability to reflect the heterogeneity of disease progression and accommodate 
comorbidities, lifestyle factors, and social determinants situates them at the forefront of precision 
medicine for neurodegenerative conditions [14], [15], [16], [17]. 

In clinical settings, DT frameworks enable the simulation of expected responses to pharmacological 
and behavioural interventions, allowing care teams to preemptively assess benefit-risk ratios and 
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personalise therapeutic approaches. Through real-time integration of multimodal data, DTs detect 
clinically relevant deviations from baseline functioning and support adaptive decision-making across 
diverse care contexts. This includes optimising medication regimens, tailoring behavioural 
strategies, and configuring assistive technologies, with embedded feedback mechanisms that 
continuously update recommendations to align with the patient’s dynamic status [11], [18]. 

Table 2 shows a representative spectrum of digital-twin applications in dementia research and care. 
All projects aim to exchange episodic, retrospective management for continuous, data-driven 
support tailored to individual trajectories. Reported outcomes include improved diagnostic 
discrimination, more precise prognoses, better-targeted caregiver guidance, and streamlined trial 
designs, suggesting that digital-twin approaches are steadily gaining practical relevance across the 
dementia continuum [4], [11], [14]. 

The emerging evidence base points to two strategic priorities. First, the field must channel its 
methodological diversity into modular and interoperable architectures able to accommodate 
heterogeneous data sources without sacrificing reproducibility or scalability. Second, wide adoption 
will depend on rigorous external validation, transparent benchmarking and governance that 
anticipates privacy, bias and equity concerns. Addressing these priorities is essential if DTs are to 
mature from promising prototypes into dependable instruments of precision dementia care. 

Table 1: DTs use cases in dementia 

DT implementation Purpose in dementia Source 

CloudDTH: cloud-based 
digital-twin healthcare 
framework integrating 
wearable devices. 

Continuous monitoring, diagnosis and prediction 
of health status for personalised management of 
older adults. 

Liu et al., 2019 
[16] 

Synthetic-control patient 
“DTs” to replace placebo 
arms in clinical trials 
(UnlearnAI platform). 

Accelerates enrolment and resolves ethical issues 
by simulating disease progression in Alzheimer’s 
Disease and producing a virtual control group. 

Armeni et al., 
2022 [14] 

DT-based Cognitive Building 
framework for Ambient 
Assisted Living (AAL). 

Real-time scenario awareness and anomaly 
detection to support independent living and 
proactive assistance for older adults with cognitive 
impairment. 

Binni et al., 2022 
[19] 

Algorithm for discovering 
DTs via phase-matching of 
MMSE decline trajectories. 

Identifies closest historical progression patterns to 
support personalised prognosis and care decisions. 

Wickramasinghe 
et al., 2022 [12] 

 

Communication-robot + 
ambient-sensor + wearable 
digital-twin system for daily 
behavior monitoring. 

Detects early dementia signs by analysing life-
function and cognitive-function behavior changes 
without interviews. 

Kobayashi et al., 
2021  

 

Smartwatch-based digital-
twin agent (avatar) plus in-
home sensors for 

Monitors daily activities and social engagement; 
provides mental-health support and early anomaly 
detection for cognitively frail older adults. 

Kobyashi et al., 
2022 
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constructing an elderly 
“digital twin”. 

AI rehabilitation robot 
integrating visual cognition 
and motion control via a 
digital-twin framework. 

Personalised cognitive-motor rehabilitation and 
progress monitoring. 

Tao et al., 2024  

Metaverse-based anti-ageing 
healthcare platform 
integrating AI, blockchain, 
IoT devices and digital-twin 
avatars. 

Personalised monitoring and interventions to delay 
cognitive decline and dementia onset. 

Mozumder et 
al., 2024 [20] 

Digital-twin–enabled 
community elderly-care 
service system with five-
layer architecture. 

Optimise resource allocation, real-time monitoring 
and personalised services to support older adults 
with cognitive decline. 

Ye, 2024  

DT Immersive Design Process 
(DT-IDP) combining digital-
twin modelling with VR 
immersion. 

Captures real-time user feedback to optimise age-
friendly healthcare spaces and reduce stress for 
dementia patients. 

Kemkomnerd & 
Tirapas, 2024 
[21] 

Deep-learning NLP digital 
twin built from clinical notes 
and multimodal patient data. 

Tracks cognitive decline, predicts relapses, and 
personalises dementia care. 

Mikołajewska & 
Masiak, 2025  

Digital Alzheimer’s Disease 
Diagnosis (DADD) digital-
twin model built from non-
invasive EEG recordings. 

Generates personalised biomarkers that predict 
CSF Alzheimer’s pathology and conversion from 
subjective cognitive decline to clinical impairment. 

Amato et al., 
2025 [8] 

Precision-medicine 
multiscale digital-twin 
framework that integrates 
multi-omics and clinical data. 

Simulates disease mechanisms to uncover drug 
targets, guide repurposing and de-risk Alzheimer’s 
clinical trials. 

Ren et al., 2025 
[17]  

Organoid-based patient-
specific digital twin 
integrating iPSC-derived 3D 
brain organoids, organ-on-a-
chip interfaces and AI 
analytics. 

Real-time modelling of Alzheimer’s pathology and 
personalised drug response to guide precision 
therapies. 

Dolciotti et al., 
2025 [9] 

 

2.1.3.1 Strategic priorities for DT deployment 
DTs represent a promising paradigm shift in dementia care, enabling proactive, personalised, and 
data-informed interventions. Longitudinal research and cross-sector partnerships are vital to ensure 
scalable and equitable implementation [22]. With sustained efforts, DTs could fundamentally 
improve how we understand, monitor, and support individuals living with dementia. 

Turning this promise into routine practice demands a concerted focus on interoperable data 
standards, transparent benchmarking, and rigorous external validation across heterogeneous 
populations and care settings. Harmonising multimodal inputs—from non-invasive EEG and 
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multimorbidity profiles to organoid-based phenotypes—will be essential for mitigating the 
methodological variability now evident in the literature and for distilling generalizable clinical 
heuristics [4], [17]. Parallel development of ethical, regulatory, and explainability frameworks that 
address privacy, bias, and accountability concerns [23] are equally critical to foster stakeholder trust 
and facilitate regulatory approval. Embedding these priorities within adaptive learning health-
system infrastructures will enable DTs to evolve from fragmented proofs of concept into reliable, 
cost-effective pillars of precision dementia care.  

2.1.4 DTs in frailty  
Frailty is a complex, dynamic, and multidimensional condition characterised by reduced 
physiological reserves, increased vulnerability to stressors, and higher susceptibility to adverse 
outcomes such as falls, hospitalisation, disability, and mortality [24], [25], [26], [27], [28], [29], [30]. 
Once narrowly associated with physical deterioration, frailty is now widely recognised as a 
multidimensional condition encompassing interrelated biological, cognitive, nutritional, 
psychological, and social components that evolve dynamically over time [31], [32], [33]. 

DT technology offers a promising framework to address these complexities. DTs are real-time, 
adaptive virtual representations of individual health profiles, integrating data from EHRs, wearables, 
environmental sensors, and patient-reported outcomes [6], [11], [34]. By simulating patient-specific 
dynamics, DTs support predictive analytics, early detection, and evidence-based interventions [4], 
[5]. Their modular, scalable architecture facilitates integration into clinical workflows and health 
information systems. 

DTs in geriatric health settings 

DTs provide a dynamic, integrative approach to frailty modelling. By aggregating diverse inputs such 
as gait speed, nutritional indices, sensor data, and polypharmacy profiles, DTs simulate physiological 
resilience and predict frailty progression in real time [6], [31]. This supports early intervention, 
personalised care planning, and the safe testing of treatment scenarios. 

DTs are especially useful for tracking transitions from robustness to pre-frailty and frailty. In frailty-
friendly systems, DTs support predictive alerts and adaptive monitoring. Their integration with AI 
platforms enables automated triage, real-time stratification, and caregiver coordination [35]. They 
also simulate contextual and psychosocial influences such as health literacy (Kim et al., 2024), 
caregiver stress [36], or environmental strain, further individualising care. 

In clinical environments, DTs facilitate the dynamic representation of an older adult's frailty 
trajectory, enabling continuous assessment rather than episodic evaluations. By integrating 
multimodal biomarkers such as heart rate variability, inflammatory profiles, and mobility 
fluctuations, DTs provide clinicians with real-time dashboards that enhance situational awareness 
and risk prediction. These tools support shared decision-making by aligning predictive outputs with 
patient-centred goals, particularly in complex cases involving multimorbidity or polypharmacy. As 
the ageing population grows more heterogeneous, DTs offer scalable personalisation across diverse 
care settings, from home-based monitoring to acute care wards. 

2.1.4.1 Personalised use cases in frailty care 
Emerging applications of DTs in frailty care illustrate their versatility across a spectrum of clinical 
and preventive functions. These implementations leverage real-time data to detect early signs of 
vulnerability, personalise interventions, and support longitudinal care strategies tailored to diverse 
ageing populations. By simulating physiological, behavioural, and environmental variables, DTs 
provide actionable insights into multiple frailty domains, ranging from nutritional decline and 
cognitive deterioration to social isolation and polypharmacy risks. Table 3 presents representative 
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use cases of DT integration in frailty care, showcasing their clinical objectives, methodological focus, 
and associated evidence.  

Table 2: DTs use cases in frailty care 

DT implementation Purpose in frailty care Source 

Gait speed monitoring with sensor 
integration 

Early fall risk prediction and 
balance deterioration 

Chehrehgosha et al., 2021 
[34] 

Nutritional tracking via metabolic 
biomarkers and wearables 

Detection of sarcopenia and 
malnutrition 

Veninšek & Gabrovec, 
2018; Li et al., 2023 [24] 

Simulation of cognitive-motor 
decline using multimodal data 

Prediction of dementia onset 
and hospitalisation risk 

Song et al., 2024; Mello et 
al., 2021 [37] 

Drug interaction modelling in 
polypharmacy contexts 

Optimisation of deprescription 
strategies 

Pullen et al., 2023; Lyu et 
al., 2021 [26] 

Oral health status and social 
engagement simulation 

Identification of oral frailty and 
isolation 

Zhu et al., 2024; [38] 

Doi et al., 2023 [39] 

Remote monitoring in post-ICU 
COVID-19 recovery 

Functional status restoration 
post critical care 

Seixas et al., 2023  

DT-enabled AI platforms for care 
coordination 

Integrated intervention planning 
in community settings 

Kouroubali et al., 2022 [35] 

Multimorbidity profiling through 
hemoglobin and comorbidity data 

Risk stratification for functional 
disability 

Liu et al., 2021 [30] 

Health literacy-based decision 
frameworks 

Improved health-related quality 
of life via tailored education 

Kim et al., 2024 [28] 

Simulation of frailty trajectories in 
emergency settings 

Frailty-informed acute care 
triage 

Mooijaart et al., 2022 [29] 

Real-time wearable integration for 
chronic monitoring 

Adaptive risk modelling and 
personalised alerts 

Johnson et al., 2024 [11] 
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2.1.4.2 Future directions and challenges for DTs in frailty care 
DTs represent one of the most promising innovations to transform frailty care in older adults. By 
integrating clinical, behavioural, social, and environmental data into dynamic virtual 
representations, DTs enable real-time simulation and prediction of individual health trajectories, 
allowing for truly personalised, proactive, and person-centred care. 

Their potential to anticipate risks, tailor interventions, and provide personalised clinical 
recommendations opens the door to a new paradigm in geriatrics—one in which ageing is supported 
by empathetic and intelligent technology, and clinical decisions are informed by integrated and 
contextualised data. 

To ensure that DTs evolve from proof-of-concept to robust tools in geriatric care, future research 
should focus on longitudinal validation, cost-effectiveness analyses, and real-world implementation. 
In doing so, DT can become a cornerstone in the shift toward smarter, more preventive, and more 
human-centred care for older adults. 

2.1.5 DT methodologies  
Various global and EU projects have advanced DT methodologies in dementia and frailty care, 
integrating real-time data, AI-driven analytics, and decision support to personalise treatments and 
monitoring. 

Key Examples: 

▪ NeuroTwin: Uses individualised brain models integrating neuroimaging (MRI, EEG) with 
biophysical simulations and AI to optimise personalised neuromodulation therapies for 
Alzheimer's disease. 

▪ VirtualBrainCloud: A cloud-based platform creating personalised brain simulations from 
multi-modal data (clinical, neuroimaging, multi-omics). Utilises high-performance 
computing and AI to forecast disease progression, enabling personalised diagnostics and 
risk reduction strategies. 

▪ NTT Bio-DT: Incorporates extensive biomedical data (PET scans, genetic, biomarkers) into 
predictive AI models to personalise dementia diagnosis and treatment, enabling early 
intervention and virtual drug testing. 

▪ Unlearn.AI DTs: AI-generated virtual patient profiles for clinical trials, simulating 
individualised disease trajectories to reduce reliance on placebo groups, enhancing 
prognostic insights. 

▪ FrailSafe: Employs wearable and IoT sensors to continuously monitor frailty indicators 
(mobility, physiological data), using big data analytics to predict frailty progression and 
deliver personalised intervention recommendations. 

▪ My-AHA: Integrated middleware platform aggregating multi-domain health data (physical, 
cognitive, social), processed through an AI-driven Decision Support System to provide 
personalised frailty risk assessments and tailored preventive interventions. 

▪ e-VITA: Virtual coaching system utilising ambient sensors and comprehensive user profiles 
to offer personalised daily guidance and preventive recommendations, laying foundations 
for future full-fledged DTs. 

Drawing from these projects, the DT methodology that is proposed by also from the Literature 
Review of the previous sections, should include: 

1. Data integration layer: Secure aggregation of multimodal patient data—clinical, genetic, 
biomarker, sensor-derived, and lifestyle information. 
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2. Knowledge base layer: Structuring integrated data into standardised knowledge graphs 
supporting personalised patient profiling and continuous data fusion. 

3. AI and simulation layer: Combining predictive machine learning models with physiological 
simulations to forecast dementia progression, frailty trajectories, and personalised 
treatment responses. 

4. Decision support and user interface layer: Presenting actionable insights and tailored 
interventions through intuitive digital dashboards for healthcare providers, carers, and 
patients, enabling proactive, personalised healthcare. 

This methodology aligns COMFORTage’s objectives with best practices, ensuring predictive, 
preventive, and personalised care for individuals experiencing dementia and frailty. 

2.1.6 Research gaps and objectives 
From the previous sections, another key point that could be extracted is the research gaps that all 
methodologies and studies have imposed and how COMFORTage can be in the state-of-the-art 
frontier by tackling these gaps through addressing them as objectives. 

Table 3: Communication and dissemination team of each WP8 partner/Style 1 

Research gap How to tackle COMFORTage alignment 

Lack of 
standardised 
multimodal data 
integration 

Establish comprehensive data 
ingestion platforms with 
standardised data formats, ensuring 
seamless integration of diverse 
health data streams (biomarkers, 
sensor data, EHRs, genetic profiles). 

Highly aligned, as COMFORTage 
emphasises integrating 
multidimensional, multimodal 
data for personalised dementia 
and frailty management. 

Limited scalability 
and reproducibility 

Develop modular and interoperable 
architectures that facilitate 
scalability and ensure the 
reproducibility of digital twin 
implementations across diverse 
populations and care settings. 

Strongly aligned; COMFORTage 
aims to deploy scalable DTs across 
13 European pilot sites, requiring 
standardised and replicable 
solutions. 

Insufficient 
longitudinal 
validation 

Conduct rigorous long-term 
validation studies to ensure 
reliability and effectiveness of DTs in 
predicting disease progression and 
treatment outcomes. 

Highly aligned; COMFORTage 
intends continuous updates and 
validations based on longitudinal 
patient data to refine predictive 
accuracy. 

Inadequate 
integration of 
predictive AI and 
mechanistic 
modelling 

Integrate hybrid modelling 
approaches combining AI-driven 
predictive analytics with 
mechanistic, knowledge-based 
simulation models for accurate and 
explainable insights. 

Directly aligned; COMFORTage 
specifically advocates for 
combining AI predictions with 
physiological and mechanistic 
simulations. 

Limited 
personalised 
decision support 
capabilities 

Enhance DTs with sophisticated, AI-
driven decision support tools 
providing personalised 
recommendations for proactive 
healthcare interventions. 

Precisely aligned; COMFORTage 
explicitly supports personalised 
interventions through its 
integrated CDSS. 
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Privacy and ethical 
concerns regarding 
data handling 

Establish transparent governance 
frameworks, data privacy protocols 
(GDPR compliance), and ethical 
standards for data usage and patient 
privacy protection. 

Aligned; COMFORTage prioritises 
secure data handling and 
compliance with European Health 
Data Space (EHDS) standards, 
ensuring privacy and ethical data 
use. 

Absence of user-
friendly interfaces 
for patients and 
clinicians 

Develop intuitive dashboards and 
interactive digital twin interfaces 
facilitating ease of use, real-time 
monitoring, and actionable insights 
for both clinicians and patients. 

Strongly aligned; COMFORTage 
incorporates user-facing 
interfaces to translate digital twin 
insights into actionable, easily 
interpretable guidance for care 
teams and patients. 
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3 PDT Development and Architecture 
This section details the development process and architectural design of the PDT system within the 
COMFORTage project. Building on the insights from the state-of-the-art analysis implemented in the 
previous section, it outlines the core components, data flows, and technical infrastructure required 
to implement a dynamic and scalable PDT framework. The architecture integrates multimodal data 
sources, including clinical records, sensor data, lifestyle inputs, and genomics, with advanced 
modelling techniques and explainable AI modules. Emphasis is also placed on modularity, 
interoperability, and alignment with European data and interoperability standards, ensuring the 
system can be deployed and adapted across diverse healthcare settings. 

3.1 Concept and methodology  
The PDT that will be developed within the COMFORTage project represents an advanced, data-
driven approach to the personalisation and optimisation of dementia and frailty care in ageing 
populations. Central to this concept is the aggregation and harmonisation of a large-scale, 
heterogeneous dataset, derived from thirteen distinct pilot studies across Europe, in conjunction 
with open-access datasets, established research cohorts, and biobanks. This comprehensive 
repository enables the creation of DTs—virtual, evolving representations of individual health 
status—capable of simulating disease trajectories, risk profiles, and personalised intervention 
scenarios. 

The scientific foundation of this approach rests on the integration of diverse, multi-modal data 
streams. Each pilot study within COMFORTage addresses specific aspects of the dementia and frailty 
continuum, ranging from community-based multi-modal prevention and omics-enabled health 
assessments to advanced biomarker and imaging studies, frailty and sarcopenia detection, and 
longitudinal digital phenotyping through mHealth technologies. Data collected encompasses clinical 
and neuropsychological assessments, biomarker and genetic profiles, neuroimaging, physiological 
signals, behavioural and lifestyle metrics, and digital outcomes produced by innovative assessment 
tools. 

Harmonisation protocols are systematically employed to ensure data quality, semantic 
interoperability, and compliance with regulatory standards such as GDPR. Standardisation of 
variables, ontological mapping, and robust pseudonymisation strategies underpin the ethical 
integration and exchange of data across pilot sites and secondary sources, preserving both the 
richness of the data and the privacy of participants. 

Building on this harmonised foundation, digital twin models are constructed for each participant 
using state-of-the-art machine learning, simulation, and statistical inference methodologies. These 
individualised models are inherently dynamic, assimilating new information as it becomes available 
from ongoing pilot activities, wearables, clinical follow-ups, and user-engaged digital tools. This 
continuous updating enables real-time monitoring of cognitive, physical, and psychosocial domains 
and facilitates the early detection of deviations from normative trajectories.  

A core methodological feature of the digital twin framework is its capacity for individualised scenario 
simulation. By leveraging predictive analytics and causal inference techniques, the system can 
forecast the impact of various interventions or lifestyle modifications on future health outcomes. 
This allows for the exploration of scenarios at both the individual and subgroup level, enabling 
clinicians and participants to jointly consider the risks and benefits of potential prevention or 
treatment strategies. 

The translation of model insights into actionable, context-aware recommendations is achieved 
through integration with a CDSS. The CDSS acts as a bridge between the data-driven models and 
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clinical practice, operationalising recommendations in the form of care plans tailored to the unique 
needs, preferences, and objectives of each individual, while also considering the specific 
infrastructure and resources available at each pilot site. 

A distinguishing aspect of the COMFORTage methodology is the incorporation of an ecosystem of 
opt-in digital tools. These tools, provided by consortium partners, enable the assessment of 
cognitive, linguistic, physical, nutritional, and psychosocial domains through engaging and validated 
digital formats. Examples include digital cognitive training platforms, linguistic games for 
neuropsychological assessment, virtual supermarkets for functional evaluation, mHealth 
applications for activity and nutrition tracking, and platforms targeting social connectivity and 
loneliness. Participation in these tools is strictly voluntary and governed by transparent consent 
processes, ensuring respect for autonomy and user empowerment. 

Continuous stakeholder engagement is embedded throughout the methodological workflow. Older 
adults, carers, clinicians, and social scientists participate in the co-design, implementation, and 
evaluation of the digital twin system and its components. Feedback loops enable iterative 
refinement of both the underlying models and the user-facing interfaces, enhancing usability, trust, 
and real-world impact. 

By uniting large-scale, multi-modal data integration, individualised simulation, predictive analytics, 
and co-created digital assessment tools, the COMFORTage digital twin methodology represents a 
significant advance in the scientific landscape of dementia and frailty prevention and care. This 
integrated framework not only facilitates early identification and mitigation of risk but also enables 
adaptive, person-centred intervention strategies that are robust, explainable, and scalable across 
the heterogeneity of European healthcare systems. 

3.2 Population databases  
Developing a population-level DT for dementia and frailty necessitates access to comprehensive, 
high-quality datasets that capture the multifaceted aspects of ageing. Open datasets play a pivotal 
role in this endeavour, offering rich, diverse, and longitudinal data essential for modelling individual 
health trajectories. These datasets encompass various domains, including clinical assessments, 
cognitive evaluations, genetic information, lifestyle factors, and sensor-derived measurements. By 
integrating such data, researchers can construct dynamic and personalised DTs that simulate 
disease progression, predict health outcomes, and inform tailored interventions. 

Table 4: Datasets for dementia and frailty DT 

Dataset Name Description Access Information 

Alzheimer's Disease 
Neuroimaging 
Initiative (ADNI) 

A longitudinal study collecting 
clinical, imaging (MRI, PET), genetic, 
and biospecimen data from 
individuals with Alzheimer's disease, 
mild cognitive impairment, and 
healthy controls. 

ADNI Website 

Health and 
Retirement Study 
(HRS) 

A biennial longitudinal survey of 
Americans over age 50, covering 
health conditions, cognitive status, 
and socioeconomic factors. 

HRS Website 

Cambridge Centre 
for Ageing and 

A large-scale, cross-sectional dataset 
covering the adult lifespan (ages 18–
88), including MRI (structural, 

CamCAN Website 

https://adni.loni.usc.edu/
https://hrs.isr.umich.edu/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
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Neuroscience 
(CamCAN) 

functional, diffusion), MEG, and 
extensive behavioural and cognitive 
data. Designed to investigate 
healthy cognitive aging. 

English Longitudinal 
Study of Ageing 
(ELSA) 

A study of adults aged 50 and over 
in England, collecting data on health, 
cognitive function, and social 
participation. 

ELSA Website 

Study on Global 
Ageing and Adult 
Health (SAGE) 

A WHO-led study collecting data on 
adults aged 50+ from six countries, 
focusing on health and well-being. 

SAGE Website 

UK Biobank A large-scale biomedical database 
containing genetic, lifestyle, and 
health information from 500,000 UK 
participants. 

UK Biobank Website 

GSTRIDE Dataset Contains health assessments, 
functional and frailty variables, and 
gait metrics from elderly adults, 
using inertial measurement units 
(IMUs). 

GSTRIDE Dataset 

TIHM Dataset Provides multi-sensor data (audio, 
video, wearable sensors) for 
monitoring individuals with 
dementia in real-life settings. 

TIHM Dataset 

Dem@Care Dataset Offers multi-sensor data for 
monitoring individuals with 
dementia, including audio, video, 
and wearable sensor data. 

Dem@Care Dataset 

In summary, leveraging widely used and known datasets (open or after receiving appropriate li-
cense) is instrumental in advancing the development of DTs for dementia and frailty. The integration 
of diverse data sources enables a more accurate and individualised representation of health states, 
facilitating early detection, personalised care planning, and improved patient outcomes. As the field 
progresses, the continued availability and utilisation of open datasets will be crucial in refining DT 
models and enhancing their applicability in pilot clinical settings. 

3.3 Conceptual architecture  
In a layered view, the DT system is organised into functional layers that handle data flow from 
collection to insight. This separation of concerns aligns with current digital health frameworks, 
where layers manage complexity by consolidating distinct functionalities [40]. Below we describe 
each layer relevant to prototyping a DT for an elderly individual with dementia/frailty and the 
conceptual architecture is presented in Figure 2.  

https://www.elsa-project.ac.uk/
https://www.who.int/data/data-collection-tools/study-on-global-ageing-and-adult-health
https://www.ukbiobank.ac.uk/
https://www.nature.com/articles/s41597-023-02428-0
https://www.nature.com/articles/s41597-023-02519-y
https://www.demcare.eu/
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Figure 2: PDT conceptual architecture 

3.3.1 Data acquisition, preprocessing and integration layer 
This bottom layer interfaces with the physical world, collecting raw data from the patient’s daily life. 
It includes wearables, clinical assessment records, lifestyle data, medical records, demographic data, 
and biomarkers. The PDT will be integrated in the VHP Platform of the COMFORTage project, and 
the data will be collected directly from the integrated knowledge base, and the preprocessed data 
will be forwarded to the main Backend component of PDT. (For more information about the data 
ingestion, the VHP Platform and Integrated Knowledge Base, please refer to D3.1, D2.8, and D3.5). 
Finally, all datasets from 3.2 will be integrated to populate the database with already extracted 
knowledge to enhance the data correlation.  

3.3.2 Modelling layer 
In the modelling layer of a dementia and frailty DT, state-of-the-art data-driven models simulate 
disease progression, functional decline, and cognitive deterioration based on large-scale population 
data. Machine learning (ML) and statistical methods are employed to capture the complex 
trajectories of cognitive decline in dementia and the multifactorial nature of frailty. These 
population-level models are built from rich cohort datasets (section 3.2) and all the 13 Pilots of the 
project, learning how features like biomarkers, cognitive scores, gait speed, and comorbidities 
evolve over time. More specifically, the initial literature review demonstrated four different 
algorithms or ML models that are able to capture the variations of the data and provide a risk factor 
analysis for dementia and frailty.  
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1. Physically Informed Neural Networks (PINNs): PINNs integrate physical laws (e.g., differen-
tial equations describing disease mechanisms or physiological decline) into neural network 
training, enabling robust simulation of disease progression even with sparse or noisy data.  

2. Generative Adversarial Networks (GANs): GANs are deep learning models that generate re-
alistic synthetic patient data by pitting a generator against a discriminator, allowing the mod-
elling of complex distributions and the creation of DTs that mirror real patient trajectories. 

3. Markov chains: Markov chain models capture the probabilistic transitions between discrete 
health states (e.g., healthy, pre-frail, frail, demented), providing interpretable and mathe-
matically grounded tools for forecasting disease trajectories over time. 

4. What-if scenarios: What-if scenario modelling leverages the digital twin to simulate the po-
tential impact of hypothetical interventions (e.g., exercise programs, medication adjust-
ments) on future health outcomes, supporting personalised decision-making. 

These models were initially designed to serve the purpose and objectives for which they were in-
tended. Due to the population databases collection and the ongoing research for this core-compo-
nent the AI analysis and the performance metrics will be stated under the final form “ Digital Twins 
for Personalised Treatment and Monitoring II” in M36. 

3.3.3 Simulation layer 
On top of the static model, the simulation layer enables dynamic what-if experimentation. Here, the 
DT’s models are executed forward in time or under hypothetical scenarios to project disease 
progression, functional decline, or recovery trajectories. Using the personalised model as a starting 
point, this layer can run simulations of neurodegenerative progression (e.g. cognitive decline over 
the next year) or frailty progression (e.g. muscle strength loss under certain conditions). It can also 
test interventions in silico: for example, adjusting a medication, introducing a balance training 
ageing, or other therapy, and then simulating the outcome on the patient’s cognitive and physical 
health. This capability mirrors current research platforms where digital patient models are used to 
predict future states and evaluate interventions. In the VirtualBrainCloud neuro-twin, for instance, 
researchers could simulate the effect of deep brain stimulation on a virtual patient’s brain network 
to predict the treatment’s outcome before trying it in real life. By iterating simulations, clinicians 
and researchers can explore scenarios in a risk-free environment, which is invaluable for 
personalised planning in dementia care and frailty prevention. 

3.3.4 Analytics and decision support layer 
Building on simulation outputs and the up-to-date model, the analytics layer provides interpretation 
and decision support. It employs AI and statistical tools to derive insights such as risk assessments, 
anomaly detection, and outcome predictions. For an elderly patient, this layer might compute a 
frailty risk score or predict the probability of rapid cognitive decline, falls, or hospitalisation based 
on the twin’s state. By comparing the patient’s trajectory against known disease progression 
patterns (built into the DT’s knowledge base), the system can flag concerning changes or emerging 
risks that merit attention. For example, if the DT detects a faster-than-expected drop in cognitive 
performance (given baseline and model expectations), it could alert clinicians to possible upcoming 
clinical deterioration. Similarly, leveraging machine-learning on simulation data can uncover hidden 
patterns or disease mechanisms and improve prognostic accuracy. The goal of this layer is to 
transform raw simulations into actionable information – e.g., identifying early warning signs, 
providing personalised decision support for interventions, and optimising care plans. Notably, a 
recent study showed that incorporating digital twin simulation data improved classification of 
patients across different neurodegeneration stages exemplifying the analytic power of such systems 
[41]. 



Digital Twins for Personalised Treatment and Monitoring I 
 

 

27 

3.3.5 Visualisation and interaction layer 
At the top, the DT system presents information to end-users (researchers, clinicians, or patients) 
through visualisation and interaction tools. This layer includes dashboards, visual analytics, or even 
VR environments that allow users to inspect the twin’s status and explore scenarios. For a research 
prototype, a web-based dashboard might display the patient’s vital trends, cognitive assessments, 
and simulation-predicted outcomes in intuitive charts. An example in practice is an older patient’s 
diabetes DT platform that provides real-time web interfaces for patients and doctors to view health 
data trends and predictions. Similarly, a dementia/frailty twin could visualise the patient’s current 
frailty index, forecasted functional decline curves, or the expected impact of a proposed therapy, 
thereby aiding understanding. This layer ensures the complex “internals” of the DT are accessible 
and interpretable, closing the loop from data to user [42]. It also enables feedback: clinicians might 
modify parameters (e.g. simulate a different intervention) via the interface, which feeds back to the 
simulation layer. In summary, the visualisation layer turns the DT’s rich data and analytics into a 
usable decision-support tool for humans. 

From a modular perspective, the same system can be described as a set of core components or 
engines, each responsible for specific functionalities, and all interacting to realise the DT’s 
capabilities. The key modules for a dementia/frailty DT prototype might include the following: 

▪ User modelling module: This module maintains the digital profile of the elderly individual. 
It aggregates all personal data (medical history, sensor data, assessments) and encodes the 
patient’s current state in a computable form. Essentially, it is the knowledge base or memory 
of the DT – containing, for example, the patient’s current cognitive status, comorbidities, 
medications, mobility level, etc. – and is continually updated with incoming data. The user 
model provides the foundation on which other modules build, ensuring that any simulation 
or analysis starts from a patient-specific baseline [43]. In practice, this could be implemented 
as a dynamic database plus a set of parameterised models (e.g. a personalised physiological 
model) representing the individual. Other modules query and update the user model via 
defined interfaces. 

▪ Disease progression simulation module: This is the engine that drives what-if analyses and 
temporal forecasts. Given the current user model and embedded disease models, it simu-
lates how the person’s health might evolve. For dementia, it could simulate the progression 
of cognitive decline or neuronal loss; for frailty, the trajectory of functional impairments or 
sarcopenia. The module may use systems modelling (e.g. differential equations for disease 
spread in the brain, or agent-based models of daily functioning) and/or machine learning 
predictors to step the patient’s state forward in time. It can operate at multiple scales – for 
instance, modelling molecular pathology progression as well as macroscopic functional de-
cline. Crucially, this simulation module allows the DT to project future states under various 
conditions. It interacts heavily with the user model, using it as initial conditions and updating 
it with simulated changes, and provides outputs to the risk and scenario modules. Contem-
porary research, such as a graph-based digital patient twin, demonstrates how forecasting 
modules can predict the evolution of vital health indicators over time, underscoring the im-
portance of this component. 

▪ Risk assessment engine: This module analyses the data from the user model and simulation 
to estimate risks of adverse events or outcomes. It serves as the DT’s prognostic and warning 
system. For example, based on current trends and simulated trajectories, it might calculate 
the risk of falls in the next month, the likelihood of transition from mild cognitive impairment 
to Alzheimer’s dementia in a year, or the risk of hospitalisation due to frailty-related compli-
cations. The engine combines patient-specific data with medical knowledge (e.g. known dis-
ease progression models and population statistics) to generate these risk scores employ 
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statistical risk models or AI classifiers trained to detect early signs of deterioration. As noted 
in a policy report, a digital twin equipped with prior knowledge of disease progression can 
flag changes in health status and potential risks that warrant intervention. In our modular 
setup, the risk engine pulls inputs from the user model (current state) and simulation module 
(predicted future states) to produce interpretable risk indicators. These risk outputs can then 
be visualised for clinicians or trigger automated alerts in the DT system. 

▪ Scenario generator and intervention module: This component enables exploration of hypo-
thetical scenarios and personalised interventions. Working closely with the simulation mod-
ule, it allows users to pose “What if?” questions to the twin. For instance, the scenario gen-
erator can create a virtual scenario where the patient begins a new physical exercise regi-
men, or adjusts a certain medication, or receives a cognitive training ageing. It then runs the 
simulation module under those modified conditions to predict outcomes (e.g. will the exer-
cise slow down frailty progression? How much might it improve balance scores?). Essentially, 
this module systematically varies inputs or parameters in the user model to emulate inter-
ventions or environmental changes, thereby providing a sandbox to test therapeutic strate-
gies. Such “virtual trial” capability is a hallmark of digital twin systems – the ability to simu-
late different treatments and see which is most effective for the individual. The module’s 
outputs (predicted outcomes for each scenario) feed into the analytics and visualisation lay-
ers for comparison. In a research prototyping context, this component is invaluable for eval-
uating intervention efficacy before real-world implementation, aligning with the DT’s role as 
a decision-support tool. 

▪ Cognitive state predictor: Given the focus on dementia, a dedicated module can be assigned 
to predicting and monitoring cognitive status. This is a specialised analytics component (of-
ten AI-driven) that takes data from the user model (e.g. recent cognitive test scores, daily 
activity patterns, neuroimaging markers) and produces an estimate or forecast of the pa-
tient’s cognitive condition. For example, it might predict the patient’s score on a standard 
memory test 6 months from now or determine the probability that the patient’s dementia 
will progress from moderate to severe within a year. Such predictions can be made using 
machine learning models trained on longitudinal data, or mechanistic models of neuro-
degeneration. The cognitive predictor enhances the twin’s ability to track neurological de-
cline and evaluate the impact of interventions on cognitive outcomes. Notably, advanced 
digital twin platforms have demonstrated improved classification of neurodegenerative dis-
ease stages by incorporating ML analysis of twin data3. Our cognitive module would similarly 
leverage the integrated data to classify the patient’s current dementia stage and predict fu-
ture changes. It interacts with the user model (for input features), and its outputs inform the 
risk engine (for dementia-related risks) and the scenario module (to see how an intervention 
might alter cognitive trajectory). 

These modules are highly interdependent and communicate through well-defined interfaces. For 
instance, the user modelling module provides the initial state and ongoing updates to the simulation 
module; the simulation module provides future state projections to the risk engine and scenario 
generator; the risk engine and cognitive predictor feed their findings back into the user model (up-
dating the knowledge of likely outcomes) and up to the visualisation layer. All modules draw from 
the same underlying data repository (the user model) ensuring consistency. Crucially, a secure data 
exchange backbone underpins these interactions (though details of data pipelines or external inte-
gration are beyond our focus). Modern digital health twin frameworks emphasise such modular de-
signs, where components like simulation, prediction, and data management are decoupled but 

 

3 https://cordis.europa.eu/article/id/447334-brain-digital-twins-transform-neurodegenerative-disease-care 
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interoperable. This modularity is especially useful in a research prototype: each component (e.g. 
the disease model or the risk algorithm) can be refined or replaced without overhauling the entire 
system, enabling rapid iteration. 

In summary, the layered perspective delineates vertical slices of functionality – from data acquisi-
tion up to visualisation – while the modular perspective zooms in on specific engines and their in-
terplay – from the user model to simulators and predictors working together. Both views converge 
on a state-of-the-art DT system that can continuously assimilate an older patient’s data, simulate 
their health trajectory, and provide predictive insights. Such architecture, grounded in current re-
search and experimental platforms (e.g. brain simulation avatars for dementia or IoT-driven twins 
for chronic disease management) offers a robust foundation for developing personalised decision 
support in dementia and frailty care. By clearly defining layers and modules, researchers can build 
and iterate on each aspect of the twin – from sensing to AI analytics – accelerating progress toward 
a future where virtual patient twins help optimise real-world elder. 

3.4 Personalised recommendations  
A central innovation of the COMFORTage PDT framework is its ability to generate personalised 
recommendations for dementia and frailty care. Leveraging continuously updated, multi-modal 
patient data and sophisticated simulation models, the PDT translates complex analytics into 
actionable, context-aware guidance for both clinicians and older adults. This capability shifts clinical 
practice from reactive to proactive, supporting individualised prevention, timely intervention, and 
optimised resource utilisation. 

Personalised recommendations are generated through a multi-step process as demonstrated in 
Figure: 

▪ Data integration: The PDT aggregates up-to-date clinical records, wearable sensor streams, 
lifestyle metrics, and self-reported outcomes. 

▪ Simulation and prediction: Advanced modelling and simulation layers forecast health 
trajectories and the impact of various intervention scenarios for the individual. 

▪ Risk assessment: The system continuously monitors for deviations from expected health 
trajectories and identifies risk factors such as impending cognitive decline, heightened fall 
risk, or nutritional deficits. 

▪ Decision support: The analytics layer synthesises these findings to produce tailored 
recommendations, delivered through a CDSS and user-facing dashboards. 
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Figure 3: Recommendations generation flow 

 

Table 5: Recommendations and examples 

Recommendation 
type 

Input data sources Example system output / 
recommendation 

Early detection and 
intervention 

Cognitive test scores, 
wearable activity data 

“Recent data suggest a faster-than-
expected decline in short-term memory. 
Consider early intervention with 
cognitive stimulation therapy.” 

Adaptive medication 
management 

Pharmacogenomic profile, 
medication adherence, side-
effect reporting 

“Pharmacogenomic profile indicates 
increased risk for side effects with 
current medication. Alternative therapy 
is recommended.” 

Fall prevention Gait speed, step count, 
mobility metrics, 
environmental sensors 

“Mobility patterns suggest elevated risk 
of falls. Recommend a physical therapy 
assessment and home safety review.” 

Nutrition and 
lifestyle support 

Activity data, nutrition 
metrics, patient-reported 
outcomes 

“Recent weight loss detected; protein 
intake below recommended threshold. 
Suggest nutritionist referral and tailored 
meal planning.” 

Personalised 
scenario simulations 

Simulation models, what-if 
scenario generator 

“Model predicts a 15% improvement in 
frailty index with adherence to proposed 
20-minute daily exercise routine.” 

Social and 
psychological 
wellbeing 

Data from digital social tools, 
engagement/activity levels 

“Reduced social engagement detected 
over the past month. Recommend 
enrollment in group activities or digital 
social programs.” 

Personalised recommendations need to be delivered through intuitive dashboards for clinicians to 
assist on the careplan decisions. These dashboards translate analytics into clear, actionable 
insights—such as risk scores, alerts, and progress trends—and empower shared decision-making. 
The system also supports two-way interaction, enabling users to adjust preferences or simulate the 
effects of potential lifestyle changes, thereby increasing engagement and adherence. 

3.5 COMFORTage DT Platform  
A critical gap identified in the literature and current digital twin initiatives is the lack of user-
friendly, integrated platforms that provide healthcare practitioners with actionable insights, real-
time data access, and intuitive interfaces for clinical decision support. Existing solutions are often 
fragmented, technically complex, and not designed with end-user needs in mind, limiting their 
adoption in real-world healthcare settings. The COMFORTage DT Platform was developed 
specifically to bridge this gap, delivering a comprehensive, user-centric environment that 
consolidates all essential patient information, analytics, and intervention tools in a single, easy-to-
navigate interface. 

The COMFORTage platform enables clinicians and researchers to access, manage, and act on the 
full spectrum of data generated by the pilot study. Key features include: 
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▪ Visual analytics dashboards for at-a-glance interpretation of patient status and cohort 
trends. 

▪ PDT recommendations generated by advanced AI modules directly supporting 
personalised intervention planning. 

▪ Device management for tracking all medical and sensor devices allocated to each patient. 

▪ Comprehensive patient records, including clinical data, cognitive assessments, care plans, 
and adherence metrics. 

▪ Access to validated opt-in digital tools, supporting multidomain assessment and 
intervention for dementia and frailty. 

▪ Integrated notifications and alerts to prompt timely clinical action. 

▪ Multilingual and role-based interfaces ensuring accessibility for all pilot site users. 

Below, each screenshot illustrates a core component of the COMFORTage platform as experienced 
by healthcare professionals. 

 

 

Figure 4: Log-in page of PDT platform 

The secure log-in page provides access control, ensuring that only authorised practitioners and pilot 
personnel can view and manage sensitive patient data. Credentials are authenticated via a modern, 
streamlined interface. 
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Figure 5: Patients overview 

The main dashboard lists all enrolled patients in the pilot, displaying key metadata such as 
adherence, contact information, and last update. This page allows clinicians to quickly select a 
patient, create new profiles, or navigate to individual patient files. The menu on the left provides 
access to appointments, opt-in tools, notifications, and help resources. 

 

Figure 6: Patient file dashboard 

Upon selecting a patient, the platform displays a comprehensive analytics dashboard: 
demographics, alerts from the clinical team, adherence data, and visualisations of health and 
intervention trends. Custom charts track adherence over time, enabling the practitioner to identify 
patterns and respond proactively. 
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Figure 7: PDT AI recommendations and care plan 

This section showcases AI-generated recommendations from the PDT. Personalised suggestions 
target memory function, physical activity, diet adherence, and other health domains, each linked to 
estimated impacts (e.g., reduction in risk scores). The care plan area enables clinicians to create or 
update intervention activities, with options for nutrition, exercise, medication, and educational 
materials—directly translating PDT insights into actionable care pathways. 

 

Figure 8: Editing or creating a care plan 

The care plan editor allows practitioners to customise activities or interventions for each patient. 
Drop-down menus provide standardised activity types, ensuring consistency and ease of use in 
planning, updating, or documenting care processes. 
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Figure 9: Devices management 

Device management is integral for tracking all medical and wellness devices (e.g., activity trackers, 
blood pressure monitors, body composition scales) assigned to patients. The platform displays 
device details, manufacturer, and provides options to connect or disconnect equipment—ensuring 
data continuity and accountability. 

 

Figure 10: Opt-in tools 

Clinicians can access a curated set of validated opt-in tools for cognitive assessment, educational 
intervention, or social engagement. Each tool includes a description, access link, and usage 
guidance, supporting both research needs and patient empowerment within the pilot. 

By directly addressing the research gap in user-centred clinical platforms, the COMFORTage DT 
Platform offers a holistic, visually intuitive, and actionable environment for healthcare 
professionals. It allows seamless visualisation of all relevant patient data, real-time analytics, device 
tracking, and integration of digital health tools—ensuring that the power of the PDT is fully 
accessible and practically usable in everyday clinical workflows. This commitment to usability, 
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interoperability, and actionable insight is foundational to the COMFORTage approach and central to 
driving the adoption of digital twin technology in dementia and frailty care. 
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4 PDT integration in COMFORTage 
This section describes how the PDT framework is integrated into the broader COMFORTage platform 
to support personalised, data-driven care for ageing populations. It highlights the technical and 
functional connections between the DT system and key COMFORTage components, including the 
CDSS, the ICML, the ageing-focused EHDS and IKBs infrastructure, and digital health tools for 
patients and caregivers. The section also explains how interoperability, real-time data exchange, 
and user-centric interfaces are achieved to ensure seamless interaction between clinicians, patients, 
and the digital twin environment. 

4.1 CDSS Integration and Decision Making  
4.1.1 The workflow of intervention planning from the CDSS perspective 
The software architecture of the COMFORTage platform, [1], and the user-interaction concept, in 
[2], specifies the PDT as the leading subsystem for patient-specific AI-driven decision-making about 
individualised medical and lifestyle interventions. The CDSS attains the role of a lower-level 
subsystem with the following core functionality and technological integration with the PDT: 

▪ The CDSS allows for the planning of intervention based on crucial core data about patient 
cases. It receives this data from the Integrated Knowledge Base (IKB) via a data connection 
running through the PDT. For this purpose, the CDSS provides a connector module to the 
PDT to interact with. 

▪ Based on the considered case data, the CDSS triggers AI requests for the identification of 
interventions suited for the considered case and receives the corresponding AI results of 
analysis. The processing of AI requests and creation of AI results is done by the AI-related 
components of the COMFORTage platform, namely the Explainable Artificial Intelligence 
(XAI) framework and the ICML. This communication and data transfer between the CDSS and 
the AI components also runs through the PDT, which for this purpose interacts with an AI 
connector contained in the CDSS. 

▪ The received AI results of analysis form the data input for the identification of relevant 
intervention options and their exploration in the search of the most suitable ones. For this 
planning step, the CDSS provides a graphical user interface (GUI) plugin with the required 
visual and functional features, and a method module for the PDT to interact with. The most 
suitable options are then provided to the PDT for a further comparison and adaptation of 
the options and the selection of interventions for their subsequent application.   

▪ The finally adapted and selected interventions are then transferred back to the CDSS, where 
they are documented and thereby serve as data input for the next step in the sequential 
decision-making (SDM) process of intervention planning. For this documentation step, the 
CDSS provides a GUI plugin with the needed features, and a method module for the PDT to 
interact with. 

4.1.2 Technological and functional integration of the CDSS 
The specified workflow features a natural distribution of decision-making tasks to the COMFORTage 
subsystems of the PDT and the CDSS: 

▪ The PDT attains the role of the leading system for intervention planning, which allows for 
detailed assessment of intervention options based on the complete case data and prognoses 
of the further courses of cases, and the individualised adaptation and final selection of 
intervention options for subsequent application. 
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▪ The CDSS assists the PDT by an automated identification of case-relevant intervention 
options based on the corresponding AI results of analysis, the exploration of these options 
for further examination in the PDT and the documentation of the final decisions as 
information input for further decisions. 

This distribution of tasks is reflected in the recently conducted research and development tasks. A 
first prototype of the COMFORTage CDSS was created on the technological basis of the configurable 
CDSS DiADeMa and most recently adapted to the COMFORTage branding. Figure 11 shows the 
survey of an electronic patient record in this CDSS with exemplary case data in text format. This 
visualisation also contains features for the documentation of patient cases and selected 
interventions in terms of their crucial parameters, and for an automated quality management 
assuring data completeness and consistency. 

 

Figure 11: Screenshot of COMFORTage CDSS prototype with an electronic patient record for an 
artificial patient case with exemplary content data. The text plugin indicates missing case data 

identified in the automated quality management 

The main tasks addressed with the CDSS are the exploration of intervention options, which were 
identified as relevant based on the AI results of analysis, and the selection of the most suitable one 
for further processing in the PDT. Figure 12 shows the visual and functional elements of the CDSS 
for these tasks. This visualisation features a ranking of relevant intervention options, which come 
along with explanatory context information about the reasoning for these suggestions. The actual 
format and contents of this context information are a topic of ongoing conceptual work on the 
interaction of the CDSS and the COMFORTage AI components. The ranking of options colored 
according to the COMFORTage branding and the displayed text plugin for one intervention option 
may thus be considered as current exemplary approaches for the integration of explainability 
features into the AI-assisted decision-making process. 

 

Figure 12: Screenshot of CDSS prototype with the graphical features of the planning of 
interventions based on automated suggestions and Elementary explainability features. The text 
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plugin provides explanatory context information about the reasoning of the suggested 
intervention option. 

The list of relevant options shown in Figure 12 is a natural visual and functional component for 
supporting the generic intervention planning process aside of the more advanced planning 
addressed by the PDT. Furthermore, this component can essentially be used independently from 
the underlying case data. Hence, software design and implementation works have started on the 
provision of this component as a GUI plugin, which allows for a direct integration into the graphical 
frontend of the PDT. 

4.2 ICML and Explainability Integration and hosting  
Within the COMFORTage platform, the PDT serves as the central AI-driven module for real-time, 
personalised care planning and risk assessment in dementia and frailty. A core strength of the PDT 
lies in its seamless integration with both the ICML and the platform’s XAI capabilities, ensuring that 
every AI-generated recommendation is robust, transparent, and clinically actionable. 

The ICML acts as a comprehensive repository of advanced AI and statistical models, covering 
domains such as risk prediction, disease trajectory simulation, and intervention outcome forecasting 
for the target populations. When new patient data—such as sensor inputs, clinical assessments, or 
patient-reported outcomes—are recorded, the PDT automatically invokes the appropriate models 
from the ICML to update risk scores, health status projections, and tailored intervention options. In 
practical terms, this allows the PDT to provide clinicians and care teams with dynamic, up-to-date 
insights into a patient’s likelihood of cognitive decline, fall risk, or response to specific interventions. 
The ICML also supports scenario analysis; for example, clinicians can use the PDT to simulate the 
impact of a proposed exercise ageing or medication change, with the relevant models in the ICML 
running these individualised “what-if” analyses in the background. 

Crucially, the PDT does not simply present raw predictions—it also leverages XAI tools to generate 
interpretable explanations for each recommendation. After the ICML models produce their outputs, 
the PDT automatically calls the XAI modules, which apply techniques such as feature attribution or 
local interpretability (e.g., SHAP, LIME) to clarify which data points or clinical factors most influenced 
the model’s decision. These explanations are visualised within the PDT interface, enabling clinicians 
to quickly understand why, for instance, the system has flagged a particular patient as being at high 
risk of falls or cognitive deterioration. This transparency not only fosters trust and acceptance 
among healthcare professionals but also facilitates shared decision-making and communication 
with patients and carers. For more information regarding the XAI visualisations, please refer to D3.8 
‘ Integrated AI-based Care Model Library II’ that will be delivered on M32. 

From a technical perspective, the integration of PDT, ICML, and XAI is achieved through standardised 
APIs and secure data exchange protocols, hosted within the Virtual Health Platform (VHP). The PDT 
interacts with these back-end services both on-demand—when a user requests a new risk 
assessment or intervention simulation—and continuously, whenever new data is ingested. The 
result is a unified, user-friendly interface where all predictive analytics and their underlying 
explanations are accessible to end-users without requiring separate interactions with the ICML or 
XAI components. 

Overall, the combination of the ICML and XAI within the PDT architecture ensures that COMFORTage 
delivers explainable, evidence-based, and practically actionable recommendations for dementia 
and frailty care. This approach directly addresses the challenge of trust and transparency in clinical 
AI, supporting wider adoption and more effective, individualised interventions across diverse care 
settings. 
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4.3 VHP Platform  
Working paper D2.8 - Reference Architecture and Integration of VHP Platform I provides a detailed 
description of each component comprising COMFORTage’s virtualised healthcare platform (VHP). 
Specifically, section 3.3.2 of D2.8 describes the interface details for the personalised PDTs 
component, outlining the interaction of the component with other components of the platform – 
namely, Integrated Knowledge Base (IKB), CDSS,  ICML, Trainings Recommender and People-centric 
Assistive Applications/opt-in tools. Furthermore, section 5.3.2 of D2.8 describes several technical 
specifications of the PDTs component in the form of open interfaces, communication patterns, 
information flows and design principles. These specifications provide critical details for guiding the 
design and development of the PDTs component, as well as its integration with other components 
in the VHP. 

Figure 13 shows the component interaction diagram representing the overall COMFORTage VHP 
system architecture. As part of the platform’s patient treatment and monitoring tools, the PDTs 
component is a front-end application that will make use of digital simulation technologies to 
generate several personalised virtual models of older individuals. Through these customised and 
precise models, users will be able to carry out various clinical tasks, such as the generation of health 
trajectories, the creation of AI-based optimal therapy scenarios, in addition to prognosis and 
diagnosis.  

 

Figure 13: Component interaction diagram representing COMFORTage virtualised healthcare 
platform system architecture 

Specifically, the component interacts with the IKB to retrieve patient data and store any data/results 
the component generates for each individual. The PDTs component also interacts with both the 
ICML (in order to provide analytics and visualisations to users that result from the execution of the 
different AI/ML models) and the XAI framework (for providing explanations of the models’ results 
to clinicians). Clinicians will be required to approve/reject the targeted recommendations 
(prevention/intervention measures), which necessitates interfacing with the various assistive 
applications and opt-in tools of the platform, as well as the Training Recommender of the Training 
and Education Toolkit. Finally, access to the component and its various features will be governed by 
the requirements of each pilot study.  



Digital Twins for Personalised Treatment and Monitoring I 
 

 

40 

4.4 Opt-in tools data sharing  
Within the COMFORTage platform, opt-in tools constitute an essential ecosystem of digital 
resources designed to engage patients in their own health management. These tools—ranging from 
cognitive training games and linguistic assessments to nutrition trackers, physical activity 
applications, and social engagement platforms—offer validated, user-friendly formats for collecting 
multidimensional health data beyond traditional clinical environments. Data sharing from these opt-
in tools plays a pivotal role in enriching the PDT, ensuring that each digital replica is informed by a 
comprehensive and dynamic set of inputs reflecting the patient’s daily life, functional abilities, and 
behavioural patterns. 

The rationale for sharing data generated by opt-in tools is rooted in the ambition to enable truly 
holistic and personalised care. Integrating these rich, real-world data streams with clinical, sensor, 
and self-reported inputs allows for continuous updates of the PDT, supporting real-time risk 
assessment, proactive intervention planning, and adaptive care pathways. For example, insights 
gleaned from digital cognitive games can inform early detection of cognitive changes, while physical 
activity trackers and nutrition apps provide a granular view of lifestyle factors that influence frailty 
progression. Data from these tools, once consent is provided, are securely transmitted to the 
COMFORTage platform—typically via encrypted APIs or secure data exchange protocols—and are 
systematically mapped to each participant’s PDT profile for unified analytics and decision support. 

Participation in opt-in tools, and the sharing of their data, is strictly voluntary and governed by 
transparent, informed consent procedures. Patients are presented with clear explanations 
regarding what data will be shared, the intended uses, and who will have access. The platform 
enables users to manage their participation preferences at any time, including opting in or out of 
data sharing or revoking consent for specific tools or data types. All data processing fully complies 
with GDPR, EHDS, HHRs and related regulatory standards, employing robust pseudonymisation, 
access control, and data minimisation measures to safeguard privacy and ensure ethical handling. 
Patients are empowered with intuitive dashboards to review shared data, adjust their preferences, 
and monitor data flows, reinforcing their role as active stewards of their own health information. 

The benefits of this data sharing framework are multifaceted. For clinicians and researchers, it 
enables the construction of richer and more accurate DTs, facilitating the timely identification of 
health changes and the personalisation of care plans. For patients, it means tailored 
recommendations and interventions grounded in their real-world behaviours and preferences. 
Additionally, aggregated and anonymised data from opt-in tools contribute to ongoing scientific 
research, supporting the continuous refinement of care models and the development of innovative 
interventions for dementia and frailty. 

To guarantee data security and trust, all transmissions employ state-of-the-art encryption and role-
based access, ensuring that only authorised professionals involved in the patient’s care can access 
sensitive information. Comprehensive audit trails document all data interactions, promoting 
transparency and accountability. Data is shared solely as necessary for direct clinical care, platform 
improvement, or—where separately consented—research purposes. 

In summary, opt-in tools data sharing within COMFORTage balances the empowerment of patient 
engagement with the highest standards of privacy and data protection. As the platform evolves, 
future iterations aim to further enhance interoperability with external health applications and 
expand the repertoire of supported opt-in tools, deepening the integration of digital participation 
in personalised dementia and frailty care. 
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4.5 Pilot studies usability  
The integration of the PDT into all 13 COMFORTage pilot studies marks a significant advancement 
in the delivery and evaluation of personalised care for older adults with dementia and frailty. The 
PDT acts as a digital bridge, bringing together multidimensional health, behavioural, and 
environmental data to create a continuously updated, individualised profile for each participant. 
This unified platform empowers care teams to monitor health trajectories, detect early warning 
signs, and coordinate interventions across a diverse spectrum of real-world settings—from primary 
care and memory clinics to home environments, assisted living facilities, and day-care units. 

By consolidating data from electronic health records, wearable sensors, clinical assessments, and 
patient-reported outcomes, the PDT ensures that care is not only data-driven but also context-
aware and tailored to the unique circumstances of each pilot site. For healthcare professionals, the 
platform streamlines access to actionable information, supports risk stratification, and enables the 
simulation of “what-if” scenarios to optimise intervention strategies. For patients and their carers, 
the PDT offers greater transparency, engagement, and opportunities for proactive management of 
health and wellbeing. 

Furthermore, the PDT platform facilitates the standardised collection and sharing of pilot data, 
enabling cross-site analytics and harmonised evaluation of outcomes. This harmonisation supports 
robust multi-site research, comparative effectiveness studies, and the scaling of best practices 
across Europe. The seamless integration of opt-in digital tools within the PDT further supports 
cognitive assessment, physical activity tracking, and social engagement, enhancing the 
comprehensiveness and real-world relevance of the pilot interventions. 

In summary, the PDT transforms the pilot study landscape in COMFORTage by delivering an 
adaptable, user-friendly, and scientifically robust digital environment that meets the needs of 
clinicians, researchers, patients, and carers alike. 

4.5.1 Pilot #1: UNIMAN 
In the first COMFORTage pilot, the PDT serves as a pivotal tool for integrating and analysing the 
complex interplay of lifestyle, genetic, and biological factors associated with dementia risk in a large, 
“at risk” population. Each participant’s PDT aggregates baseline health data—including polygenic 
risk scores, blood-based biomarker profiles, comorbidities, and results from health and lifestyle 
questionnaires—into a dynamic, personalised digital profile. 

During the intervention, the PDT continuously updates this profile with longitudinal data from both 
e-health support systems and omics feedback, depending on the participant’s randomisation group. 
The platform’s simulation and analytics modules allow clinicians and researchers to track changes 
in key risk indicators, such as biological age (via methylation indexes), cognitive performance, and 
health behaviours, throughout the 9-month follow-up period. By providing individualised risk 
estimates and visual analytics, the PDT empowers health coaches to deliver tailored advice and 
adjust preventive strategies in real time. 

Additionally, the PDT supports outcome evaluation by enabling direct comparison of pre- and post-
intervention biomarker levels and lifestyle metrics within each digital twin. For trial monitoring and 
research, the harmonised data infrastructure of the PDT facilitates the assessment of intervention 
effects across all four groups, ensuring that both the impact of health coaching and epigenomic 
profiling can be rigorously analysed. The result is a highly personalised, adaptive approach to 
dementia prevention that leverages digital twin technology to maximise the effectiveness of 
lifestyle and genetic interventions. 
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4.5.2 Pilot #2: NKUA 
In Pilot #2, the PDT platform is primarily utilised by clinicians as an advanced analytics and 
monitoring environment, supporting the identification of early risk factors for dementia during the 
preclinical stage. The pilot consolidates large-scale, longitudinal data from established studies such 
as HELIAD and ALBION, as well as new participants enrolled in COMFORTage, to create a 
comprehensive repository of retrospective and prospective health information. 

The PDT does not serve as an intervention tool in this pilot. Instead, clinicians leverage its powerful 
visualisation capabilities to track and analyse a wide range of biological, lifestyle, and cognitive data 
over time. This includes monitoring subtle changes in cognitive performance, following the 
evolution of biomarkers, and mapping trajectories of at-risk individuals before symptoms appear. 
The system supports the exploration of associations between various health markers and future 
cognitive decline, enabling clinicians to generate hypotheses, support ongoing research, and 
facilitate early detection efforts. 

Ultimately, the PDT’s role in Pilot #2 is to enhance scientific understanding of the mechanisms 
underlying dementia risk and progression, rather than to deliver or recommend interventions. The 
platform supports clinicians in making sense of complex, multidimensional datasets, identifying 
patterns, and sharing actionable insights with the research community for future prevention 
strategies. 

4.5.3 Pilot #3: ACE 
In the third pilot, the COMFORTage PDT is deployed to enable the integration and individualised 
analysis of complex, multimodal health data—ranging from genetic and neuroimaging markers to 
clinical, digital, and functional assessments. For each participant, the PDT creates a dynamic, living 
model that assimilates neurological and nursing evaluations, MRI imaging, plasma and CSF 
biomarkers, genotyping results (including polygenic risk scores and ApoE), and innovative digital 
biomarkers such as spontaneous speech analysis. 

By aggregating these diverse datasets into a unified digital profile, the PDT supports the core aim of 
the pilot: to identify individuals at high risk of cognitive decline and deliver precisely tailored 
prevention and intervention strategies. Through advanced simulation and AI-driven analytics, the 
PDT allows clinicians and researchers to monitor cognitive and functional changes in real time, 
evaluate the biological impact of interventions, and forecast the likely benefit of different strategies 
for each individual. 

The randomised controlled trial design of this pilot—contrasting an actively supported group using 
COMFORTage digital tools (such as the PUNTO app for speech monitoring) with a control group 
receiving standard care—enables direct measurement of the PDT’s value in both outcome 
prediction and care personalisation. PDT-based analytics will track cognitive, biological, and 
functional outcomes longitudinally, helping to elucidate the interplay between intervention, genetic 
risk, brain imaging findings, and digital markers. 

Additionally, the PDT’s integrated platform ensures secure and standardised data sharing across 
partners through Data Transfer Agreements, supporting both privacy and interoperability. This 
comprehensive approach empowers the ACE pilot not only to measure cognitive improvement and 
quality of life (QoL) gains, but also to advance the predictive science of digital and biological markers 
in dementia prevention—driven by the actionable insights generated by the PDT. 

4.5.4 Pilot #4: FPG 
In Pilot #4, the PDT is central to enabling precision medicine for individuals with subjective cognitive 
decline (SCD) or mild cognitive impairment (MCI). By continuously integrating and harmonising data 
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from blood-based biomarkers, genetic risk factors, advanced imaging, and comprehensive clinical 
assessments, the PDT creates a detailed and dynamic digital profile for each participant. 

This unified model empowers clinicians and researchers to identify those at heightened risk of 
progression to dementia, years before clinical symptoms become pronounced. The PDT leverages 
its AI-driven analytics and simulation capabilities to stratify individuals based on their biological, 
genetic, and connectivity markers, supporting targeted decision-making for early, personalised 
prevention strategies. For example, if a participant’s PDT model indicates elevated amyloid levels or 
high polygenic risk scores, it can trigger a recommendation for tailored interventions such as 
nutritional counseling, specific physical exercise regimens, or cognitive training. 

Throughout the two-year intervention period, the PDT will not only monitor the impact of these 
personalised plans on cognitive performance and quality of life (QoL) but also dynamically update 
risk profiles and recommendations as new data becomes available. This feedback loop ensures that 
interventions remain optimally matched to each participant’s evolving risk landscape. 

Moreover, the PDT platform will facilitate the tracking of metabolic and cardiovascular risk 
management, adherence to interventions, and patient satisfaction, providing both the research 
team and participants with transparent, actionable feedback. This approach directly addresses the 
pilot’s objectives: to evaluate the impact of personalised interventions versus standard care, and to 
better understand the interplay between lifestyle, biomarkers, and cognitive health outcomes. 

By operationalising advanced prevention strategies through the PDT, Pilot #4 not only enhances 
early detection and individualised care but also exemplifies the COMFORTage vision for scalable, 
adaptive, and evidence-based dementia prevention. 

4.5.5 Pilot #5: MUL 
In Pilot #5, the PDT is employed by clinicians as a centralised data monitoring and analytics system 
to investigate familial and lifestyle-related risk factors for dementia prevention. The focus of this 
pilot is on at-risk individuals—such as those with a family history of dementia or early cognitive 
complaints—and on understanding how lifestyle and educational interventions might affect long-
term health outcomes. 

Within this observational context, the PDT is not used to generate or prescribe new interventions. 
Rather, clinicians utilise the platform to aggregate participant data—including demographic details, 
medical history, neurocognitive assessments, laboratory results, and self-reported behaviours—
into an accessible, interactive dashboard. The PDT’s visualisation tools enable clinicians to follow 
each participant’s physical and cognitive trajectories, assess adherence to community education 
and lifestyle programs, and compare baseline and follow-up results. 

The primary function of the PDT in this pilot is to empower clinicians and researchers with clear, 
longitudinal views of how changes in lifestyle, social engagement, and educational initiatives may 
influence dementia risk profiles. By providing timely, comprehensive insights into participant 
outcomes, the PDT underpins the pilot’s goals of raising awareness, reducing risk factors, and 
supporting research into effective prevention strategies—while all clinical decisions remain the 
responsibility of the care team, outside the direct scope of the PDT system. 

4.5.6 Pilot #6: AUTH 
In Pilot #6, the PDT plays a central role in supporting clinicians as they deliver, monitor, and 
personalise a complex, remote multimodal intervention aimed at reducing frailty and cognitive 
decline in older adults. Given the digitally enabled nature of the trial—including the integration of 
cognitive training, wearable sensors, mHealth applications, and nutritional monitoring—the PDT 
provides a unified, clinician-facing environment for comprehensive participant management. 
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Throughout the trial’s six phases, clinicians use the PDT to view real-time data streams from digital 
tools such as BrainHQ, smartwatches, smart scales, and mHealth apps. The platform aggregates 
neuropsychological assessments, physical and nutritional evaluations, medical history, and 
biometric readings, making longitudinal tracking seamless across all five assessment points (from 
baseline to 21 months follow-up). This continuous data integration allows the clinical team to 
visualise trends in cognitive and physical performance, monitor adherence to training protocols, and 
rapidly identify individuals who may benefit from tailored intervention adjustments. 

The PDT’s simulation and analytics features allow clinicians to compare individual progress against 
expected trajectories and stratification factors (e.g., sex, education, frailty level). For the 
intervention group, personalised recommendations can be generated based on current and 
predicted states, such as alerts to increase activity, reinforce nutritional intake, or intensify cognitive 
training. For the control group and healthy controls, the PDT facilitates unbiased monitoring and 
benchmarking of natural progression versus intervention response. 

In the post-intervention and long-term follow-up phases, the PDT continues to support clinicians by 
visualising comparative outcomes, quantifying the sustained impact of the intervention, and helping 
interpret multi-domain improvements (or declines). Furthermore, the system’s dashboard enables 
documentation of participant engagement with educational content, adherence to physical and 
cognitive programs, and overall well-being. 

In summary, the PDT acts as the clinical command center for Pilot #6: enabling data-driven decision-
making, intervention adaptation, and outcome evaluation in a complex, technology-rich clinical 
research setting. By consolidating digital health data, analytics, and intervention management into 
a single platform, the PDT not only increases efficiency and accuracy for the clinical team but also 
helps deliver more personalised, responsive care to older adults at risk of frailty and cognitive 
decline. 

4.5.7 Pilot #7: MFU & VSTE 
In Pilot #7, the PDT serves as an integrated digital platform to assist clinicians in the complex 
management of participants at risk for cognitive decline, with a special emphasis on novel risk 
factors such as oral frailty and oral microbiota. Given the pilot’s focus on multidimensional risk 
assessment—including neuropsychological tests, EEG, sleep quality, activities of daily living, diet, 
blood pressure, glucose, and oral health—the PDT consolidates and visualises this array of data in a 
single, user-friendly dashboard accessible only to clinicians. 

Clinicians use the PDT to continuously monitor changes in participants’ oral and general health 
profiles, linking these markers with cognitive and functional outcomes. For example, the platform 
can present longitudinal visual analytics tracking oral health scores, patterns in sleep quality, 
physical activity, and nutritional status, and correlate them with neuropsychological and EEG 
findings. As new data streams in from COMFORTage digital tools and clinical assessments, the PDT 
allows for real-time risk assessment and trend analysis, helping clinicians identify early warning signs 
of cognitive deterioration or declining oral function. 

Moreover, the PDT supports the planning, adaptation, and evaluation of individualised 
interventions. For participants identified at higher risk—whether due to oral health issues, family 
history, or abnormal biomarker patterns—clinicians can use the platform’s recommendations 
engine to tailor and document preventive strategies, such as social learning interventions, 
nutritional adjustments, and physical activity plans. The dashboard enables efficient tracking of 
intervention adherence, participant engagement, and outcome progression over time. 

Through its comprehensive data integration and analytics capabilities, the PDT empowers clinicians 
to better understand the interplay between oral health, lifestyle factors, and cognitive trajectories, 
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ultimately facilitating the implementation and continuous refinement of innovative, multi-domain 
preventive interventions. By making complex, heterogeneous data actionable and easy to interpret, 
the PDT enhances clinical decision-making and personalised care in this pilot targeting novel demen-
tia risk markers. 

4.5.8 Pilot #9: CING 
In Pilot #8, the PDT acts as a central platform for clinicians to aggregate, monitor, and analyse 
complex longitudinal data across three distinct participant groups—patients with Alzheimer’s 
disease, individuals with Mild Cognitive Impairment (MCI), and healthy controls. As this pilot is 
observational, clinicians use the PDT primarily as an advanced data integration and visualisation 
tool, rather than for direct intervention planning. 

The PDT collects and organises the multi-domain assessments conducted at baseline and at the two-
year follow-up, including neurological examinations, neuropsychological assessments, swallowing 
function questionnaires (such as MASA, EAT-10, DHI, FOIS), and instrumental evaluations like EEG, 
MRI, and video fluoroscopy. Blood-based biomarkers, DNA, proteomic, and metabolomic data are 
also stored and visualised within the digital twin interface. By presenting this wide range of 
information in a unified and structured manner, the PDT enables clinicians to track each 
participant’s cognitive and physical trajectories over time. 

Clinicians leverage the PDT’s analytics features to identify trends and correlations between cognitive 
decline and swallowing impairment, as well as to examine the broader interplay between 
neurodegenerative progression, malnutrition, and functional abilities. For example, by visualising 
how changes in cognitive scores align with evolving swallowing difficulties or biomarker profiles, 
clinicians gain a clearer understanding of disease mechanisms and progression patterns. 

The PDT’s capacity for cohort-level visualisation also allows researchers to compare subgroups 
(Alzheimer’s, MCI, controls) on specific outcomes, facilitating hypothesis generation and supporting 
the refinement of future study protocols. Additionally, by streamlining data access and longitudinal 
patient tracking, the PDT improves follow-up processes, ensuring that clinical teams can more 
efficiently monitor disease progression and schedule timely assessments. 

Overall, in this observational pilot, the PDT enhances data management, supports hypothesis-driven 
research, and empowers clinicians with holistic, real-time views of each participant’s status, 
ultimately contributing to a more nuanced understanding of the links between cognition, 
swallowing, and neurodegenerative disease in older adults. 

4.5.9 Pilot #9: ANA 
In Pilot #9, the PDT will serve as a dynamic, clinician-facing platform to support the design, delivery, 
and monitoring of interventions tailored to the five core components of frailty: unintentional weight 
loss, exhaustion, weakness, slow walking speed, and low physical activity. Throughout the study, 
the PDT enables clinicians to consolidate all relevant participant data—from baseline assessments 
to longitudinal follow-ups—into a unified digital profile for each enrolled individual. 

During the initial co-creation phase, the PDT will help clinicians capture qualitative feedback and 
usability insights from the first 25 participants, informing refinements to the digital solution prior to 
the larger pilot. As the pilot progresses, the PDT becomes the primary tool for real-time tracking and 
visualisation of participant status, integrating monthly self-reported data (falls, hospitalisations, 
weight loss), physical performance measures, and clinical assessments. The system’s dashboard 
functionality provides clinicians with clear overviews of each participant’s frailty indicators and 
alerts for clinically significant events (e.g., a new fall or marked weight loss), ensuring timely follow-
up and intervention. 
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Importantly, the PDT’s analytics layer supports personalised intervention planning by synthesising 
current and historical data to identify evolving risks and guide care decisions. Clinicians can use the 
platform to create, document, and adjust individualised care plans based on observed changes in 
frailty status, as well as to monitor adherence to prescribed interventions. For example, a drop in 
walking speed or an episode of unintentional weight loss, flagged by the PDT, could prompt the care 
team to intensify physical activity programs or coordinate nutritional support. 

Beyond individual-level management, the PDT also facilitates group-level analysis, enabling 
clinicians and researchers to evaluate the impact of the intervention across the pilot population and 
iteratively improve the digital solution’s features. The system’s role in streamlining data collection, 
analysis, and intervention documentation ultimately enhances the effectiveness and scalability of 
frailty-targeted care in the COMFORTage project. 

4.5.10 Pilot #10: AMI 
In Pilot #10, the PDT will play a pivotal role in supporting clinicians to monitor, analyse, and optimise 
the impact of sensorimotor interventions, such as exercise and Transcutaneous Electrical Nerve 
Stimulation (TENS), on postural control and walking capacity among adults aged 40–75 years. The 
PDT will act as a clinician-facing digital environment where each participant’s multimodal data—
including proprioception measures, postural control metrics, walking ability, force steadiness, and 
neurophysiological biomarkers—are aggregated, visualised, and tracked longitudinally. 

During the study, clinicians will use the PDT to record baseline and follow-up assessments from a 
variety of sources: standardised clinical tests of balance and gait, wearable sensor outputs, 
neurophysiological data reflecting spinal and corticospinal adaptations, and participant-reported 
outcomes on independence and daily function. This comprehensive data integration allows the PDT 
to provide real-time analytics, identifying trends and subtle improvements or deteriorations in 
sensorimotor performance throughout the intervention. 

The platform’s simulation and analytics modules support personalised tracking by comparing 
individual trajectories to expected patterns of adaptation. If the PDT detects that a participant is not 
responding as anticipated (e.g., limited improvement in force steadiness or persistent gait 
instability), clinicians can use this information to tailor rehabilitation plans or adjust intervention 
intensity. Furthermore, group-level analytics within the PDT can support researchers in evaluating 
the differential effects of exercise versus combined exercise-TENS protocols, as well as the 
predictive value of force steadiness as a biomarker for intervention response. 

Ultimately, by consolidating all assessment data and intervention history, the PDT empowers 
clinicians to deliver highly individualised rehabilitation and preventive care, closely monitor 
participant progress, and document intervention outcomes for research and quality improvement. 
This functionality will not only advance clinical practice within the pilot but also generate critical 
evidence to inform future strategies for preserving mobility and independence in older adults. 

4.5.11 Pilot #11: INTRAS 
In Pilot #11, the PDT will function as a powerful data integration and visualisation platform to 
support both sub-studies, focusing on enhancing technology acceptance among older adults and 
validating novel digital tools for early detection and wellbeing. Since this is an observational pilot, 
clinicians and research staff will use the PDT primarily for advanced data analysis, real-time 
monitoring, and cohort-level insights, rather than for direct intervention planning. 

For Sub-study #1 (Enhancing technology acceptance and user experience with assistive 
technologies), the PDT will aggregate individual-level data regarding participants’ engagement with 
various assistive technologies, their feedback on usability, satisfaction, perceived usefulness, and 
impact on quality of life (QoL) and social engagement. The platform will allow clinicians and 
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researchers to visualise changes in subjective wellbeing and technology adoption patterns over 
time, supporting the evaluation of co-creation strategies and nudging interventions implemented 
throughout the pilot. This holistic perspective will help identify which motivational strategies are 
most effective for promoting technology acceptance and improving wellbeing among older adults. 

For Sub-study #2 (Enhancing acceptance and validation of an early detection VR tool), the PDT will 
serve as a central repository for longitudinal neuropsychological and behavioural data generated 
from the use of the GRADIOR DLA PREVENTION VR tool. The PDT will enable clinicians to visualise 
cognitive screening results, track neuropsychological marker changes, and identify early signs of 
cognitive decline in participants. By consolidating VR-based assessment results with other available 
health and lifestyle data, the PDT will help clinicians and researchers gain a comprehensive 
understanding of how digital tools perform in real-world settings and how user acceptance evolves 
over time. 

Across both sub-studies, the PDT will empower researchers to conduct advanced analytics on 
technology adoption trends, participant satisfaction, and the longitudinal impact of digital tools on 
health and wellbeing. The platform’s dashboard functionalities will facilitate both individual and 
group-level monitoring, supporting evidence generation for future digital health solutions aimed at 
ageing populations. 

4.5.12 Pilot #12: CERTH 
In Pilot #12, the COMFORTage PDT will play a central role in orchestrating, monitoring, and 
evaluating multifaceted interventions delivered within the nZEB Smart House Digital Innovation 
Hub. This state-of-the-art living lab leverages a rich ecosystem of intelligent IoT devices, robotics, 
AR/VR platforms, and behavioural analytics to create a highly interactive, real-world testbed for 
older adults at high risk of dementia and frailty. 

Within this pilot, clinicians will utilise the PDT platform to comprehensively visualise and manage all 
intervention activities. The PDT will integrate data streams from health-related IoT sensors, smart 
home devices, virtual reality training games, and social robots, presenting a unified dashboard that 
displays behavioural, physiological, and cognitive performance metrics for each participant. For 
example, the PDT will continuously update with ambient sensor readings—such as activity levels, 
sleep quality, and environmental parameters—as well as results from cognitive virtual games (like 
the Virtual Supermarket, Memory AR and Linguistic games), enabling longitudinal tracking of 
functional and cognitive changes over the course of the intervention. 

Through the PDT, clinicians can monitor the effects of AR/VR-based cognitive and physical exercises, 
analyse behavioural patterns, and detect early deviations that may signal emerging risks or 
intervention needs. The integration with the SmartHome platform and data analytics tools allows 
for the dynamic assessment of physiological measurements—such as heart rate, movement, and 
sleep—directly within the living environment. Social robots and virtual coaching agents also interact 
with participants, and their data (including engagement metrics, detected emotional states, and 
conversational logs) are reflected in the PDT, providing a holistic view of patient well-being. 

Most importantly, the PDT enables clinical professionals to personalise care plans in real-time, 
adapting interventions based on the rich, multi-domain data captured in the smart home setting. 
They can review adherence to prescribed cognitive and physical activities, receive alerts regarding 
abnormal behaviours or sudden changes in health status, and evaluate the overall impact of the 
smart home interventions on quality of life and independence. The PDT’s data visualisation and 
decision support features empower clinicians to fine-tune intervention strategies, maximise 
participant engagement, and optimise health outcomes for each individual. 
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By serving as the digital backbone for integrating, analysing, and translating smart home data into 
actionable clinical insights, the PDT in Pilot 12 demonstrates how digital twin technology can enable 
highly personalised, technology-enhanced dementia and frailty care in real-world environments. 

4.5.13 Pilot #13: AUTH 
In Pilot #13, the COMFORTage PDT will serve as a vital clinical interface for monitoring and 
optimising participatory educational interventions aimed at enhancing digital and health literacy 
among older adults. Deployed within the Thessaloniki Active and Healthy Aging Living Lab (Thess-
AHALL), the PDT platform enables clinicians to integrate, visualise, and analyse a wide array of health 
and engagement data collected throughout the four phases of the pilot—needs assessment, co-
design, implementation, and evaluation. 

During the needs assessment and co-design phase, clinicians will leverage the PDT to collect and 
synthesise baseline demographic, health, and digital literacy information from participants. This 
data, securely managed within the PDT, will inform the customisation of educational content and 
help tailor ageing delivery to the individual needs of each participant. As the educational ageing 
unfolds, the PDT will track participants’ progress, engagement levels, and any reported health or 
behavioural changes, presenting clinicians with real-time analytics and trends. For instance, data 
from the COMFORTage TET platform and Healthentia digital tools—such as attendance, activity 
completion, and health self-reports—will be aggregated within the PDT, allowing for continuous 
monitoring of individual and group outcomes. 

As the pilot transitions into the optimisation and digital guidance phase, the PDT’s dynamic data 
integration capabilities will facilitate the personalisation of training activities and the adaptation of 
digital guidance based on participant feedback and ongoing assessments. Clinicians will use the PDT 
to identify individuals who may require additional support or targeted interventions, adjusting 
training materials and guidance accordingly. Throughout the evaluation phase, the PDT will serve as 
a centralised resource for analysing intervention impact—enabling clinicians to assess 
improvements in digital and health literacy, autonomy, and quality of life, and to document 
outcomes that will inform future recommendations. 

By providing an integrated clinical dashboard for data-driven decision support, participant 
monitoring, and outcome evaluation, the PDT empowers clinicians to personalise and optimise 
educational interventions in real time. This fosters a more responsive and effective approach to 
digital and health literacy training, ultimately enhancing health autonomy and well-being among 
older adults in the Thess-AHALL living lab environment. 

4.5.14 PDT KPIs and evaluation framework across pilots 
The evaluation of the PDT within the COMFORTage pilots is guided by a set of KPIs that capture the 
multifaceted impact and success of the platform across all deployment scenarios. These KPIs are 
designed to reflect both the core technical functionalities and the broader clinical and research 
objectives of each pilot, ensuring that the PDT delivers measurable value in real-world healthcare 
environments. 

The KPIs encompass domains such as data integration, AI-powered analytics, usability and 
satisfaction for clinicians, effectiveness in risk stratification and patient management, and the 
capacity for supporting advanced research (e.g., longitudinal monitoring, cross-site analysis, and 
harmonised data sharing). They also address the specific requirements of both interventional and 
observational pilots, recognising the different roles the PDT plays—from supporting clinical 
decision-making and intervention delivery to enabling advanced data analytics and hypothesis 
generation. 

Table 6: PDT KPIs per Pilot study 
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Pilot 
No. 

Pilot 
Lead / 
Title 

KPI Domains Evaluated 

1 UNIMAN Quality and accuracy of individualised risk profiles; Visual analytic use 

2 NKUA Comprehensiveness of trend visualisation; Clinician engagement 

3 ACE 
Biomarker identification through population analysis; Actionable 
recommendations per individual 

4 FPG Population-based risk biomarker factor identification; Adherence tracking 

5 MUL Long-term participant monitoring; Visual reporting for awareness 

6 AUTH Use of scenario-based tools; Personalisation in intervention 

7 
MFU & 
VSTE 

Multi-factor analysis of daily activities and clinical data to create 
intervention plans; Uptake of preventive plans 

8 CING Usability of visualisation tools for clinicians; Cross-group analysis 

9 ANA Physical intervention plan effectiveness; Intervention documentation 

10 AMI Completeness of sensorimotor data logs; Clinical response to graphs 

11 INTRAS Satisfaction with visual feedback; Change in technology adoption 

12 CERTH 
Breadth of integrated data streams and in-house technologies; 
Intervention planning for Quality of Life  

13 AUTH Visualised progress for individuals; Uptake of educational guidance 

 

4.6 Ethical and legal considerations  

The implementation of the PDT in COMFORTage pilots brings forth a range of ethical and legal con-
siderations, given the sensitive nature of the data processed, the use of AI, and the involvement of 
vulnerable populations such as older adults and individuals with cognitive impairment. Ensuring that 
the design, deployment, and use of PDT are ethically sound and legally compliant is a core require-
ment of the project and is addressed through a robust ethics management framework established 
within COMFORTage. 

4.6.1  Compliance with European and national regulations 
PDT operations strictly adhere to the European Union’s General Data Protection Regulation (GDPR), 
the Clinical Trials Regulation (CTR), and the Medical Device Regulation (MDR), as well as national 
laws in participating countries. All data processed through PDT, including health, lifestyle, and 
genetic data, are handled in accordance with the seven key principles of data protection: lawfulness, 
fairness and transparency, purpose limitation, data minimisation, accuracy, storage limitation, 
integrity and confidentiality, and accountability that are handled in VHP Platform. Before any 
processing, explicit informed consent is obtained from participants or their legal representatives, 
with clear communication of data uses, risks, and rights—including the right to withdraw at any 
stage. 

4.6.2 Ethics by design and trustworthy AI 
The PDT incorporates “ethics by design” principles in alignment with the EU Ethics Guidelines for 
Trustworthy AI. This means that at each step—from system design to implementation and 
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operation—ethical aspects such as human autonomy, prevention of harm, fairness, transparency, 
and explicability are embedded. The PDT is subject to explainability analysis as described in 4.2. 

4.6.3 Data privacy, security, and secondary use 
All PDT-related data flows are mapped and subject to privacy-by-design measures. Data are 
pseudonymised or anonymised wherever feasible, and strong security protocols are implemented 
to prevent unauthorised access, ensuring confidentiality and integrity. The secondary use of data 
(for research beyond the original purpose) is permitted only with explicit participant consent and 
subject to review by ethics committees. Data sharing is governed by strict Data Processing 
Agreements between partners, and all transfers outside the EU are subject to adequacy 
requirements or additional safeguards. 

4.6.4 Transparency, explainability, and human oversight 
The AI components of the PDT, including predictive models and explainability tools, are subject to 
transparency and accountability requirements under the forthcoming EU AI Act. Clinicians using the 
PDT receive clear information on how model outputs are generated and are empowered to override 
automated recommendations, maintaining human oversight at all times. Results are communicated 
to users and participants in an understandable manner, with appropriate attention to the risk of 
stigma or discrimination arising from AI-based risk assessments. (see section 4.2) 

4.6.5 Oversight, auditing and continuous ethical monitoring 
Ethical oversight is maintained through the COMFORTage Ethics Manager and the independent 
Ethics Advisory Board (EAB), which includes experts in bioethics, law, and clinical care. All clinical 
studies utilising the PDT are subject to review and approval by the relevant institutional ethics 
committees. The ethics oversight mechanisms encompass not only study approval but also ongoing 
monitoring, with regular ethics audits, compliance checks, and stakeholder engagement activities 
ensuring that ethical and legal standards are continuously met. Findings from data protection audits 
and ethical reviews are used to drive corrective actions and improvements, reinforcing the project’s 
commitment to responsible and trustworthy AI in healthcare. 
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5 Future PDT Versions 
This section outlines the planned evolution of the PDT framework within the COMFORTage project, 
focusing on enhancements that will improve its scalability, adaptability, and clinical impact. It 
presents a roadmap for future DT versions, including expanded data modalities, more sophisticated 
simulation capabilities, and greater personalisation through adaptive learning and patient feedback 
loops. The section also explores integration with emerging technologies and standards, such as 
federated learning and the European Health Data Space, to support broader deployment across 
healthcare systems. These future developments aim to strengthen the DT’s role in proactive, 
precision care for dementia, frailty, and beyond. 

5.1 Roadmap and testing plan  

The development of the PDT within the COMFORTage project follows a structured, iterative 
roadmap (Figure 14) that ensures alignment with clinical objectives, technical requirements, and 
regulatory standards. As visualised in the provided workflow diagrams, the roadmap begins with the 
clear definition of project objectives and scope, emphasising the early identification of use cases 
such as risk prediction, disease progression modelling, and individualised intervention planning. This 
is followed by comprehensive data acquisition and integration, drawing on heterogeneous 
sources—including neuroimaging, cognitive assessments, electronic health records (EHRs), bi-
omarkers, and IoT-enabled devices—collected across all thirteen pilot sites. 

 

Figure 14: PDT roadmap in milestones.  

Currently, the project is in the stage of large-scale data collection and platform design. Special em-
phasis is placed on harmonising data streams from different pilot studies, ensuring semantic in-
teroperability, and developing robust technical infrastructure capable of secure data management 
and real-time integration. Parallel to data integration efforts, modelling and simulation activities are 
underway, utilising state-of-the-art machine learning and physiological modelling approaches to 
capture disease trajectories and simulate intervention scenarios. More specifically, the actual time 
plan can be seen in Figure 15.  
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Figure 15: PDT implementation time plan. 

The next phases in the roadmap involve the deployment and integration of advanced AI modules 
and XAI tools, primarily within the context of the ICML and the COMFORTage VHP. Real-time data 
processing capabilities will be implemented to support dynamic model updating and continuous risk 
monitoring. Subsequent stages will focus on developing intuitive visualisation and user interface 
components to ensure the accessibility and usability of the PDT by clinical professionals at each pilot 
site.  

 

Figure 16: Implementation of milestones into actions 

A key milestone in the roadmap is the systematic validation and testing of the PDT across all pilots. 
This phase includes both technical validation (ensuring data quality, system reliability, and integra-
tion across the CDSS, ICML, XAI, and VHP platforms) and clinical testing (assessing predictive 
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accuracy, decision support effectiveness, and impact on clinical workflows). Ethical and legal com-
pliance is continuously monitored, with particular attention to anonymisation, data security, and 
adherence to GDPR and EHDS standards. 

The final steps of the roadmap involve infrastructure optimisation, continuous stakeholder feedback 
loops, and progressive scaling for broader clinical use. The PDT platform is envisioned as an adap-
tive, modular system, enabling the iterative refinement of models, workflows, and interfaces based 
on pilot site experiences and user feedback. 

The testing plan for the PDT is comprehensive and multi-layered, encompassing both technical and 
clinical validation. During the initial technical integration phase, testing will focus on data ingestion, 
semantic mapping, and secure transfer between pilot-specific databases and the central VHP. Inte-
gration tests will ensure seamless communication between the PDT, CDSS, ICML, XAI framework, 
and other COMFORTage platform components. Unit and system tests will verify core functionalities, 
including data acquisition, model training, simulation, and user interface rendering. 

Pilot-specific testing will be carried out at all thirteen sites, with each pilot responsible for verifying 
that the PDT correctly ingests and represents local clinical data, provides accurate analytics, and 
supports the intended clinical workflows. For interventional pilots, additional tests will validate the 
effectiveness of the PDT in supporting intervention planning and monitoring, as well as user experi-
ence and decision support quality. For observational pilots, emphasis will be placed on the reliability 
of analytics, longitudinal tracking, and integration with site-specific research protocols. 

All testing activities will be conducted in compliance with ethical and legal requirements, including 
data anonymisation and informed consent protocols. User acceptance testing will be performed 
with end-user clinicians to evaluate usability, interpretability of XAI outputs, and the overall impact 
on clinical efficiency and patient care. Continuous feedback from pilot sites will inform further iter-
ations, ensuring the platform remains robust, secure, and fit for purpose as it advances toward full-
scale deployment. 

5.2 Integrated features and platform evolution  

The current PDT platform as shown in the provided screenshots already supports a wide range of 
essential functionalities for clinicians, including secure log-in, patient management, structured med-
ical records, care plan design, device integration, and opt-in educational tools. The interface is intu-
itive, supporting easy navigation between patient records, appointments, device connections, and 
care activities, with clear dashboards for data visualisation and patient adherence tracking. 

To further advance clinical decision-making and research within the COMFORTage framework, the 
PDT platform will be substantially extended with several core features: 

▪ Integration of CDSS 

A robust CDSS module will be embedded into the PDT platform to provide real-time, evidence-based 
recommendations to clinicians during patient assessment and care planning. This will leverage both 
structured and unstructured data within the platform—including clinical, behavioural, and lifestyle 
information—enabling personalised guidance for diagnosis, intervention selection, and risk assess-
ment. The CDSS will interface with AI-derived insights as well as established clinical pathways, en-
suring that the support provided aligns with the latest best practices. 
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▪ Explainable AI (XAI) features 

To foster clinician trust and transparency in AI-driven recommendations, the platform will incorpo-
rate advanced XAI capabilities. For every recommendation or risk prediction generated by the AI 
models, the clinician will have access to explanations detailing the underlying data and logic that 
contributed to the suggestion. This includes visual indicators of key contributing features (e.g., spe-
cific biomarkers, trends in adherence, or lifestyle changes) and textual rationales, making it easier 
for clinicians to interpret and communicate results to patients and families. 

▪ Simulation testing scenarios: What-if analysis 

Another innovative upgrade will be the introduction of simulation testing scenarios, often referred 
to as "What-if analysis." This feature will allow clinicians to explore and test the potential outcomes 
of different interventions or lifestyle modifications before applying them in practice. By adjusting 
modifiable risk factors—such as medication, exercise frequency, nutrition, or cognitive training—
the platform will dynamically simulate and present the projected impact on patient outcomes, such 
as cognitive decline risk, frailty status, or adherence. This empowers clinicians to tailor care plans 
based on personalised, predictive insights, reducing trial-and-error and optimising patient manage-
ment. 

▪ Interoperability and Integration 

The platform will be designed for seamless interoperability with other major components of the 
COMFORTage ecosystem, including integration with the ICML, the VHP, and the Opt-in tools. Data 
flows will be standardised and secured, supporting both multi-site pilot studies and longitudinal 
data collection. 

▪ Continuous platform evolution 

Alongside these major enhancements, the PDT platform will continue to evolve, incorporating new 
data visualisation tools, enhanced patient engagement modules, advanced notification and alerting 
mechanisms, and further support for integration of medical devices. All new features will be devel-
oped in close collaboration with clinicians and researchers, ensuring usability and alignment with 
the diverse needs of the COMFORTage pilots. 

In summary, the evolution of the PDT platform will transform it into a comprehensive, clinician-
focused digital environment supporting advanced clinical decision support, explainable AI, interac-
tive simulation, and robust integration—driving innovation in dementia and frailty care across the 
COMFORTage pilot network. 

5.3 PDT alignment with GAIA-X framework  
We think it is useful to begin with two definitions: First, the GAIA-X framework is a European 

initiative focused on creating a secure, transparent, and interoperable data infrastructure that 

ensures digital sovereignty. Second, a PDT is a highly sensitive and deeply personal DT infrastructure 

that relies on secure, ethical, and highly trusted environments for health data exchange. So, it can 

be easily understood that PDT is a prime and critical candidate for GAIA-X compliance. Achieving full 

compliance for a PDT involves aligning its architecture and operations with GAIA-X's core principles 

and technical specifications, with an amplified focus on patient data sovereignty, privacy, and ethical 

considerations. We will see below how a PDT infrastructure can achieve full GAIA-X compliance: 
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5.3.1 Core GAIA-X principles and their application to a PDT 
GAIA-X’s principles are fundamental to its compliance framework. A PDT infrastructure must 

embody these principles with the highest possible standards: 

 

1. Data sovereignty and self-determination (elevated criticality): 

o PDT application: This moves from paramount to central and non-negotiable. The pa-

tients must have ultimate, granular control over their own health data. This includes:  

▪ Dynamic, granular consent management: Beyond simple "yes/no" consent, 

patients need to define who can access specific data points (e.g., genetic data, 

medication history, lifestyle data), for what purpose (e.g., treatment, re-

search, personalised health advice), for how long, and under what conditions. 

This requires sophisticated consent dashboards and potentially blockchain-

based consent registries for immutability and auditability. 

▪ Right to erasure and rectification: Patients must be able to request correc-

tion of inaccurate data and, where applicable, the erasure of data, in line with 

GDPR. 

▪ Transparency of data flow: Patients need clear, understandable information 

about every instance their PDT data is accessed, by whom, and for what rea-

son. This calls for highly detailed audit logs and user-friendly interfaces for 

patients to monitor their data's journey. 

▪ "My data, my choice" principle: The PDT must be designed from the ground 

up to empower the patient as the primary data controller, not just a data sub-

ject. 

2. Transparency and trust (major requirements): 

o PDT application: Trust is foundational in healthcare. So:  

▪ Unprecedented self-description: Every component of the PDT – from the 

sensors collecting data to the AI models processing it and the visualisation 

tools presenting it – must provide crystal-clear, machine-readable self-de-

scriptions. This includes not just technical specs but also detailed information 

on data privacy measures, ethical considerations, and algorithmic transpar-

ency (e.g., how AI models derive predictions). 

▪ Accredited certification (GAIA-X label level 3 is almost a must): For a PDT, 

lower GAIA-X label levels might not suffice. A PDT handling highly sensitive 

medical data will likely require GAIA-X label level 3 (the highest level), ensur-

ing exceptional data handling, security, and legal control by European provid-

ers, and guaranteeing European control over the digital infrastructure to 

avoid extra-territorial data access claims (e.g., from the US Cloud Act and its 

implications for Europe). 

▪ Explainable AI (XAI): Given the use of AI in PDTs for diagnosis, prognosis, or 

treatment recommendations, XAI becomes critical. Patients and clinicians 

need to understand why a certain prediction or recommendation was made, 

not just what it is. This is crucial for trust and accountability. 

3. Security and data protection (highest standards possible): 

o PDT Application: This is where the bar is set exceptionally high.  
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▪ Zero-trust architecture: A PDT infrastructure must implement a zero-trust 

model, where no entity (user, device, application) is trusted by default, re-

gardless of its location. 

▪ Advanced cryptography: Beyond standard encryption, we should consider of 

homomorphic encryption or secure multi-party computation for certain anal-

yses, allowing computations on encrypted data without decrypting it, further 

safeguarding privacy. 

▪ Data minimisation, pseudonymisation, anonymisation: Strictly adhering to 

data minimisation principles. Where possible, data should be pseudonymised 

or anonymised before being used for research or secondary purposes. The 

process and re-identification risk of pseudonymised data must be clearly doc-

umented. 

▪ Compliance with GDPR and EHDS: A PDT must comply with GDPR's strict re-

quirements for personal data, and with the specific provisions of the recently 

entered into force European Health Data Space (EHDS, 26/3/2025). The EHDS 

aims actually to facilitate the secure and trusted exchange of health data 

across the EU for both primary (healthcare delivery) and secondary (research, 

innovation, policy-making) uses, empowering individuals with control over 

their data. This involves:  

▪ Electronic Health Record (EHR) exchange formats: Adherence to 

standardised EHR formats (e.g., HL7 FHIR) for interoperability. 

▪ Health data access bodies: Interaction with national health data ac-

cess bodies that will govern secondary use of data. 

▪ Pan-European health data infrastructure: The PDT will need to be 

part of this wider infrastructure. 

4. Interoperability and portability (medical specifics): 

o PDT application: Interoperability is crucial for a holistic view of patient health.  

▪ Healthcare-specific standards: Mandatory adoption of international and Eu-

ropean healthcare data standards (e.g., HL7 FHIR, SNOMED CT, LOINC for clin-

ical terminology and messaging; DICOM for medical images). 

▪ Semantic interoperability: Use of common ontologies and clinical terminolo-

gies to ensure that data from different medical devices, hospitals, labs, and 

research institutions can be semantically understood and integrated into the 

PDT. 

▪ Model portability: Not just data, but also the computational models (e.g., 

physiological models, disease progression models) that constitute the "twin" 

must be portable and interoperable. 

5. Federation and open ecosystem (data spaces for health): 

o PDT application: This means participating in dedicated healthcare data spaces.  

▪ Health data spaces: The PDT infrastructure must be designed to integrate 

with and contribute to existing and emerging GAIA-X compliant European 

Health Data Spaces. Projects like "HEALTH-X dataLOFT" and 

"Dataspace4Health" are already demonstrating how GAIA-X principles apply 

to health data and can be consulted if needed. 

▪ Collaboration with research and clinical networks: Facilitating secure, gov-

erned data sharing with research institutions, clinical trial networks, and pub-

lic health authorities, always under strict patient consent. 

https://www.health-x.org/home
https://www.dataspace4health.lu/


Digital Twins for Personalised Treatment and Monitoring I 
 

 

57 

 

5.3.2 Criteria a PDT should meet for GAIA-X compliance 
It was shown in the previous section what are the fundamental principles of GAIA-X framework in 

relation to PDTs. Let’s see now what are the criteria which a PDT should meet to comply with the 

GAIA-X framework.   

 

1. Patient-centric consent framework: 

o Dynamic & granular consent: Allowing patients to grant, revoke, and manage con-

sent for specific data types, purposes, and timeframes through a user-friendly inter-

face. 

o Explicit consent for secondary Use: Allowing clear separation of consent for direct 

care vs. research, public health, or commercial uses. 

o Blockchain-based consent audit trail (recommended): Allowing immutable, verifia-

ble records of consent actions. 

2. Robust security and privacy by design: 

o GAIA-X label level 3: Achieving the highest GAIA-X compliance label for critical health 

data. 

o State-of-the-art encryption: For both data at rest and in transit. 

o Homomorphic encryption/secure multi-party computation: Suitable for privacy-

preserving analytics on sensitive data. 

o Strict access control: Role-based access control (RBAC) and attribute-based access 

control (ABAC) with strong authentication (e.g., multi-factor authentication, eIDAS-

compliant identities). 

o Data minimisation: Collecting and processing only the absolutely necessary data. 

o Pseudonymisation/anonymisation: Implementing robust techniques to protect pa-

tient identity for secondary use, with careful re-identification risk assessment. 

3. Full Interoperability with Healthcare standards: 

o HL7 FHIR compliance: Meant for structured exchange of clinical data. 

o SNOMED CT, LOINC, DICOM: Towards semantic interoperability and medical imag-

ing. 

o IHE (Integrating the healthcare enterprise) profiles: For consistent data workflows. 

4. Transparency and explainability: 

o Comprehensive self-descriptions: Clear, auditable documentation of data sources, 

processing algorithms, data privacy safeguards, and security measures. 

o Explainable AI (XAI) capabilities: Providing insights into how AI models arrive at their 

conclusions, making them interpretable for clinicians and understandable for pa-

tients. 

o Clear data provenance: Tracking the origin and transformations of every data point 

within the PDT. 

5. Ethical guidelines integration: 

o Ethical review and oversight: Establishment of ethical review boards and ongoing 

ethical assessments of the PDT's development and deployment. 

o Bias detection and mitigation: Establishment of active measures to identify and mit-

igate algorithmic bias in AI models that could lead to discriminatory outcomes. 

o Fairness and non-discrimination: Ensuring that the PDT's benefits are accessible to 

all, and it does not exacerbate existing health inequalities. 
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5.3.3 How the PDT should be improved in case it is not yet aligned  
One should ask what the necessary actions are so that a currently operational PDT gets compliant 

to GAIA-X framework. The below multi-faceted approach should be followed: 

 

1. Fundamental architectural redesign (high extent): 

o Shift from isolated to federated: The PDT should move away from silo-data systems 

to a distributed, federated architecture that can connect with other GAIA-X compli-

ant services and data spaces. 

o Edge/Cloud continuum: Some re-design should be needed for processing sensitive 

data close to the source (edge computing) while leveraging federated cloud re-

sources for complex analytics, ensuring data sovereignty. 

o Modular and composable services: A breakdown of the PDT into modular services 

that can be independently described, certified, and combined, adhering to GAIA-X's 

composability principles. 

2. Implementation of GAIA-X federation services (GXFS) (high extent): 

o Identity & trust management: GXFS should be adopted for secure, verifiable digital 

identities (e.g., self-sovereign identities - SSI for patients, clinicians, organisations). 

o Federated catalogue: The PDT's services and datasets should be integrated into the 

GAIA-X federated catalogue for discoverability and trust. 

o Sovereign data exchange (SDX) connectors: IDS connectors or similar GAIA-X com-

pliant mechanisms should be implemented for secure, policy-controlled data sharing. 

3. Legal and governance framework alignment (highest extent): 

o GDPR and EHDS compliance: Thorough legal audits should be conducted and all nec-

essary technical and organisational measures should be implemented to meet these 

stringent regulations. This includes data protection impact assessments (DPIAs) spe-

cific to PDTs. 

o Data usage agreements: Robust, machine-readable data usage agreements should 

be developed that reflect patient consent and GAIA-X principles. 

o Clear accountability: Clear roles and responsibilities should be defined for all stake-

holders involved in the PDT ecosystem regarding data processing and security. 

4. Certification and auditing (continuous extent): 

o Pursue GAIA-X label certification: Need to actively work towards obtaining GAIA-X 

label level 3 for the PDT services. This involves self-assessments and external audits 

by Conformity Assessment Bodies (CABs). 

o Regular security audits and penetration testing: Need for continuous assessment of 

the PDT's security posture. 

o Transparency reports: Need for periodically publish reports on data usage, security 

incidents, and compliance status to maintain trust. 

5. Human-centric design and ethical integration (crucial extent): 

o Patient empowerment interfaces: Intuitive interfaces should be developed that give 

patients meaningful control over their data and transparency into its use. 

o Ethical AI development: Ethical considerations should be embedded throughout the 

AI lifecycle, from data collection to model deployment and monitoring. 

o Informed consent education: Clear, accessible information should be provided to 

patients about what a PDT entails, how their data will be used, and their rights. 
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In order to summarise the above analysis to a central message, we should note that to align a PDT 

with GAIA-X framework is not something small. Instead, it requires a deep, systemic transformation 

across technology, legal frameworks, governance, and ethical considerations. In other words, 

placing the patients at the absolute centre of the data ecosystem, and ensuring their sovereignty, 

privacy, and trust are the paramount design principles here. The effort is indeed significant, but it's 

essential for building a truly trustworthy and ethically sound digital health infrastructure. i 

5.4 KPIs and Evaluation  
The following tables present key performance indicators (KPIs) and evaluation objectives associated 
with the development, deployment, and impact assessment of the PDT framework within 
COMFORTage. Table 8 outlines quantitative KPIs related to PDT implementation, visualisation 
features, and integration of data/AI assets, along with their evaluation methods and monitoring 
frequency. In addition, Table 9 complements this by detailing qualitative evaluation objectives 
focused on clinician usability and the PDT’s impact on patient management, providing a holistic view 
of the system’s effectiveness across technical and clinical dimensions. 

Table 7: KPIs related to PDT and Evaluation method 

KPI 
Code 

KPI Description 
Tar-
get 

PDT Contribution/As-
set 

Evaluation Method 
Fre-

quency 

2.1 
Instances of PDTs Model-
ling & Implementation 

≥ 5 
Deployed PDTs per pi-
lot/site 

Platform deploy-
ment & pilot re-
ports 

Quarterly 

5.4 
Different Visualisations De-
veloped 

≥ 5 
Dashboards, trend 
charts, risk projections 

UI/UX review, user 
feedback 

Quarterly 

- 
Data/AI Assets Integrated 
with VHP 

1200 
Digital Healthcare 
Plans, AI recs, datasets 

Asset registry, inte-
gration reports 

Semi-an-
nual 

Table 8: PDT objectives and evaluation 

Objec-
tive 

Objective Description Target 
PDT Contribu-

tion/Asset 
Evaluation 

Method 
Fre-

quency 

QA Clinician Usability & Satisfaction 
Qualita-
tive 

Visualisations, rec-
ommendations 

Survey/interview 
analysis 

Pilot end 

Impact 
Improvement in Patient Man-
agement/Risk Stratification 

Qualita-
tive 

End-to-end PDT 
workflow 

Pilot outcome 
data analysis 

Annual 

 

  



Digital Twins for Personalised Treatment and Monitoring I 
 

 

60 

6 Conclusions 
This working paper has presented a comprehensive overview of the conceptualisation, 
development, integration, and early evaluation of PDTs as part of the COMFORTage project, aiming 
to advance personalised treatment and monitoring for dementia and frailty. The document began 
by identifying the critical research gaps in the state of the art, particularly the lack of user-friendly, 
integrated platforms that can effectively translate the potential of digital twin technology into 
actionable insights for healthcare professionals. Through an in-depth literature review and analysis 
of global initiatives, the relevance and transformative potential of PDTs in addressing the 
multidimensional challenges of dementia and frailty care were established. 

The core methodology adopted in COMFORTage emphasises the integration of multi-modal, 
longitudinal data from both retrospective cohorts and ongoing pilot studies, leveraging advanced AI 
and simulation models to deliver real-time, personalised risk assessments and intervention 
recommendations. The layered and modular architecture of the PDT system was described in detail, 
outlining the flow from data acquisition and modelling to analytics, simulation, and visualisation. 
The incorporation of a wide range of validated opt-in tools, spanning cognitive, functional, and social 
domains, ensures comprehensive and holistic assessment of the older adult population. 

A central contribution of this work is the design and implementation of the COMFORTage Digital 
Twin Platform, explicitly developed to overcome usability and interoperability barriers that have 
hindered the adoption of similar technologies in healthcare. The platform brings together all 
relevant patient data, AI-driven recommendations, device management, and decision-support 
functionalities within an accessible, role-based interface tailored to the needs of clinicians. The 
inclusion of the CDSS, ICML, XAI, and the VHP further enriches the decision-making environment, 
fostering collaborative, evidence-based, and transparent clinical workflows. 

Importantly, the document outlined the planned and ongoing integration and usability testing of 
the PDT platform across thirteen diverse pilot studies. These pilots span interventional and 
observational designs, different settings, and a range of target populations, providing a robust 
testbed for validating the utility and generalizability of the PDT approach. For each pilot, specific 
examples were provided to illustrate how the platform supports clinicians in data-driven decision-
making, personalised care planning, risk stratification, and the monitoring of intervention outcomes. 

A thorough discussion of the ethical and legal considerations was also included, with particular focus 
on data governance, privacy, consent management, and alignment with the evolving EHDS and 
GAIA-X frameworks. The roadmap and testing plan presented a clear pathway for future platform 
enhancements, integration of advanced simulation and explainability features, and the structured 
evaluation of KPIs to measure impact and guide iterative improvements. 

Overall, the working paper demonstrates that the COMFORTage PDT framework represents a 
significant advancement in digital health technology, addressing major gaps in personalisation, 
integration, and clinical utility. By uniting data-driven modelling, advanced analytics, and a user-
centred design philosophy, the platform sets a new standard for real-world implementation of 
digital twins in dementia and frailty care. The work conducted to date lays a solid foundation for 
future scaling, sustainability, and cross-European adoption, ultimately aiming to improve patient 
outcomes, care quality, and system efficiency in the management of complex age-related 
conditions. This working paper is the first version of a series of working papers entitled “Digital Twins 
for Personalised Treatment and Monitoring” that seek to encapsulate and describe the work 
conducted in the context of the task – “Digital Twins for Personalised Treatment and Monitoring”. 
A second and last version of this document “Digital Twins for Personalised Treatment and 
Monitoring II” is planned to be submitted on M36 of the project. 
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6.1 Limitations and challenges  
Despite the significant advancements described in this working paper, several important limitations 
and challenges remain for the PDT approach in COMFORTage. One of the foremost challenges is the 
complexity of integrating heterogeneous data from diverse sources and pilot sites. Each site may 
use different protocols, data formats, and clinical workflows, making harmonisation and 
standardisation a continuous effort. Achieving high-quality, interoperable data streams is essential 
for the reliability of the digital twin models, but this process is both time-consuming and technically 
demanding. 

A related issue is the generalisability of the PDT platform across varied healthcare settings. Although 
COMFORTage benefits from testing in thirteen different pilots, each with its unique population and 
operational context, there is always a risk that models and workflows optimised for one site may 
not transfer seamlessly to another. This requires ongoing customisation, site-specific adaptation, 
and continuous engagement with clinical teams to ensure relevance and usability in real-world 
conditions. 

User adoption and usability represent another key area of concern. While the platform has been 
designed with clinician needs in mind, real-world environments often present unexpected barriers 
to effective use, such as limited digital literacy, workflow constraints, or resistance to change. 
Continuous feedback from end users, as well as comprehensive training and support, are crucial to 
foster trust, encourage sustained use, and optimise the clinical value of the system. 

Ethical and legal considerations also pose ongoing challenges. The collection and processing of 
sensitive health data requires strict adherence to data privacy regulations, including GDPR, the 
EHDS, and the GAIA-X framework. Ensuring dynamic and granular consent, robust data security, 
transparency, and accountability is complex, particularly as the platform expands in scope and 
capability. Any failure to maintain the highest standards in data governance could undermine user 
trust and legal compliance. 

On the technical front, some of the platform’s more advanced features—such as real-time 
simulations, ICML/XAI modules, and interactive “what-if” scenario testing—are still under 
development and require further validation. Ensuring that these tools deliver meaningful, 
interpretable, and actionable insights for clinicians, while maintaining high performance and data 
security, remains a significant task for future work. 

Finally, a major challenge lies in the rigorous evaluation and validation of the platform’s impact on 
patient outcomes, clinical workflows, and system-level efficiencies. Longitudinal data collection, 
harmonised assessment protocols, and collaborative analytics across all pilot sites are necessary to 
demonstrate real-world value. Furthermore, ensuring sustainability and widespread adoption 
beyond the project lifecycle will require ongoing investment, integration with broader healthcare 
infrastructure, and adaptation to emerging standards and user needs. 

In summary, while the COMFORTage PDT platform sets a new benchmark for the implementation 
of digital twins in dementia and frailty care, its future success will depend on continuous efforts to 
overcome these technical, clinical, regulatory, and organisational challenges. Addressing these 
limitations will be central to ensuring that the benefits of personalised, data-driven care are realised 
across diverse European healthcare environments. 
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